Vyasa: A High-performance
Vectorizing Compiler for Tensor
Convolutions onto Xilinx Al Engine

Prasanth Chatarasi*

Stephen Neuendorffer+, Samuel Bayliss+, Kees Vissers+, and Vivek Sarkar*
Habanero Research Group, Georgia Tech*, and
Xilinx Research Labs+

2020 IEEE High Performance Extreme Computing Virtual Conference
Sep 24th, 2020

Georgia School of 8 XILINX
Tech | Computer Science ®

Key architectural features of Al Engine

1) 2D SIMD datapath for fixed point

Abstract view of Al Engine

e Reduction within a row/lane
e #Columns depend on operand precision

e 32-bit types: 8 rows x 1 col
Vector register file (256B) e 16-bit types: 8 rows x 4 col (or)

\l/ 16 rows x 2 col

Local memory (128KB)

Shuffle (interconnect) network * 8-bit types: 16 rows x 8 col
Cc/‘\37 -
2) Shuffle Interconnection network
Lo X+ % - +%

e Between SIMD and vector register file
e Supports arbitrary selection of
elements from a vector register
Lis *+x - +X e Some constraints for 16-/8-bit types
e Selection parameters are provided via
Fixed Point SIMD Unit vector intrinsics

L1 X+X - +X

Problem Statement & Challenges

Problem statement: How to implement high-performance
primitives for tensor convolutions on Al Engine?

» Current practice: Programmers manually use vector intrinsics to
program 2D SIMD unit and also explicitly specify shuffle network
parameters for data selection

» Challenges: Error prone, written code may not be portable to a
different schedule or data-layouts, daunting to explore all choices to
find best implementation, tensor convolutions vary in sizes and types

Our approach: Vyasa, a domain-specific compiler to
generate high performance primitives for tensor
convolutions from a high-level specification!

Our high-level approach (Vyasa)

Tensor convolution
specification,
workload sizes

Lowering to Halide IR B
T < Auto-tuner
* (exploring
Halide 1) Translation to Triplet loop and
representation data-layout
Modules 1 optimizations)
A
2) Lazy stores Cycles
I | v v
3) Vector register reuse + handling Opti Q—U—tgit g
unaligned loads, scalar broadcast ptimized c-code

)

4) Fusion of vector operations for

the 2D SIMD datapath
5) Code generation (including better > Cycle-accurate
interleaving of loads/stores/MACs) simulator

C-code

In this talk, | focus on step-3 and step-4
leveraging shuffle network and 2D SIMD datapath!

4

Running Example — CONV1D

HALIDE CODE: O(x) += W(w) * I(x+w); for(x=0; x < 16; X++)

] _ for(w=0; w< 4; w++)
® _ . S O[x] 4= |[X+W]*W[W];

< 19 > — 16

A sample schedule: Unroll w-loop and Vectorize x-loop (VLEN: 16)

Vector notation

O(0:15) +5 W(0) * I(0:15)— How to exploit multiple columns
O(0:15) += W(1) *|I(1:16) of 2D vector substrate?

O(0:15) += \ 15 Input (I) elements in common.
O(0:15) +=|W/(3)|*|I(3:18) How to reuse them without loading again?

No direct support for unaligned loads

No direct support for broadcast operations

1) Exploiting Vector Register Reuse

1(0:15) 1(1:16)

0(0:15) += W/(0) *|1(0:15)
0(0:15) += »
0(0:15) +=
o) (01 5) += 1(3:18) 1(2:17)
Connected component
V1 — 1(0:31)

* Build “temporal reuse graph” with nodes being vector loads
* Edge exists b/w nodes if there is at least one element in common

* Al Engine allows to create logical vector reqgisters of length up to 1024 bits

* |dentify (aligned) connected components and assign each component to a vector
register that can subsume the individual vector loads of the component.

e Use shuffle interconnection network to select desired elements

2) Grouping 1D Vector Operations

0(0:15) +=[W(0) *1(0:15)] 0 .
0(0:15) +=|W(1) * I(1:16) [wo [Tway | wo [we [we [we [we | wo) | V2
0(0:15) +=
0(0:15) +=|W(3) * 1(3:18) oo =

1(0:15) 1B o [Wwiw@e @il o L bwe] an [wuy] . | ey | V1

0 31
1(3:18) —a) 0(0:15) = +
Connected component 0

7
Vi —l(:31) [wo [wo) [we wa) [we [we [we | V2

é_@_gjgé_@_gb W,@

SO

1o | o [[REasi s e e e [- | ey | V1
31

Connected component 0
V2 — W(0:7)

> b) O(0:15) += +

All the 4 operations are performed with a single load of V1 and V2 (maximum reuse)

-

Evaluation: CONV2D’s in CV (256x16)

HALIDE CODE: O(x, y) += W(r, S) * I(X+r, y+S);

40 - - -
B Expert-Written Our approach with auto-tuner Al Engine Peak
32.00 32.00 32.00
30
(V]
- 23.30 23.65
S 21.76 22.69
(&) 20.45
N
% 20 17.95
(&]
<
=
10 | .. 783 800 755 7.91 8.00 700 7.87 8.00
0 j I l
3x3 (32-bit) 5x5 (32-bit) 3x3 (16-bit) 5x5 (16-bit) Geo. Mean (32-bit) Geo. Mean (16-bit)

* Expert-written codes are available only for 3x3 and 5x5 filters
* Available as part of the Xilinx’s Al Engine compiler infrastructure

* Auto-tuner was able to find better schedules
* Especially non-trivial unroll and jam factors

Evaluation: CONV2D’s in CNN’s (128x2x16)

HALIDE CODE for REG CONV2D: O(x, y, k, n) += W(r, s, c, k) * I(x+r, y+s, c, n);

40

Our approach with auto-tuner for 32-bit types (Al Engine Peak: 8 MACs/cycles)
B Our approach with auto-tuner for 16-bit types (Al Engine Peak: 32 MACs/cycles)
28.37

26.
R 24.94
22,62 22.47 22.34 22.53
19.69
15.77
7.19 7.45 7.83 7.75 7.89 7.88 7.46 7.94I 7.67

REG-3x3 REG-5x5 REG-7x7 PW-1x1 SS-1x3 SS-3x1 DS-3x3 FC-1x1 Geo. Mean

W
o

N
o

MACs/Cycle
a S

-
o

(3]

o

* REG-CONV2D (3x3, 5x5, 7x7)

* \lectorization along Output width and Reduction along Filter channels
o PW-CONV2D (1x1), SS-CONV2D (1x3, 3x1), FC-CONV2D (1x1)

* \ectorization along Output channels and Reduction along Filter channels
e DS-CONV2D (3x3) — Padded each row

* Vectorization along Output width and Reduction along Filter width

9

Non-trivial data-layout choices

% SLY Input layout scheme (C/2)Y’X’(2)

& R

N R

0wk C LA A A A A A A A L A
& , AR4RAEZLE ' 184484k 1R 4R vl v
ﬁ w1 — Y’
< 12 4 44 4 A A A AN A

2 T v ¥ VVYVVIVVVVY

o «]

5 /

o ¥ [

8

£

% Fused Vector Multiplication: W1 * 11 + *

=

e 16-bit REG-CONV2D (3x3)
* Vectorization along Output width and Reduction along Filter channels
* For the fused vector operation (W1xI1 + W2 x 12)
» Data for (I1, 12) should be in a single vector register for the operation
* [1(0) and I2(0) should be adjacent for shuffle network constraints

o (C/2)Y’X’(2) refers to first laying out an input block of two channels followed by
width, height, and remaining channels.

10

Summary and Related Work

e Summary
* Manually writing vector code for high-performant tensor convolutions achieving

peak performance is extremely challenging!
e Domain-specific compilation can be the key!
* Proposed a convolution-specific IR for easier analysis and transformations
* QOur approach (Vyasa) can work for any convolution variant regardless of its

variations and shapes/sizes.
* Achieved close to the peak performance for a variety of tensor convolutions

* Related work
» 2D SIMD data paths and shuffle networks are unique to the Al Engine

» AFWK, vector unit of PEPSC architecture is the only closely related work
* A greedy approach in their compiler to identify fusible operations

11

