
Vyasa: A High-performance
Vectorizing Compiler for Tensor

Convolutions onto Xilinx AI Engine

1

Prasanth Chatarasi*

Stephen Neuendorffer+, Samuel Bayliss+, Kees Vissers+, and Vivek Sarkar*

Habanero Research Group, Georgia Tech*, and

Xilinx Research Labs+

2020 IEEE High Performance Extreme Computing Virtual Conference

Sep 24th, 2020

Key architectural features of AI Engine

2

1) 2D SIMD datapath for fixed point

….

….

….

…
.

L0

L1

L15

C0 C1

Shuffle (interconnect) network

Vector register file (256B)

Local memory (128KB)

…
.

…
.

…
.

C7

Fixed Point SIMD Unit

Abstract view of AI Engine

2) Shuffle Interconnection network

• Between SIMD and vector register file

• Supports arbitrary selection of

elements from a vector register

• Some constraints for 16-/8-bit types

• Selection parameters are provided via
vector intrinsics

• Reduction within a row/lane

• #Columns depend on operand precision

• 32-bit types: 8 rows x 1 col

• 16-bit types: 8 rows x 4 col (or)

 16 rows x 2 col

• 8-bit types: 16 rows x 8 col

Problem Statement & Challenges

3

Problem statement: How to implement high-performance
primitives for tensor convolutions on AI Engine?

• Current practice: Programmers manually use vector intrinsics to
program 2D SIMD unit and also explicitly specify shuffle network
parameters for data selection

Our approach: Vyasa, a domain-specific compiler to
generate high performance primitives for tensor

convolutions from a high-level specification!

• Challenges: Error prone, written code may not be portable to a
different schedule or data-layouts, daunting to explore all choices to
find best implementation, tensor convolutions vary in sizes and types

Our high-level approach (Vyasa)

4

In this talk, I focus on step-3 and step-4
leveraging shuffle network and 2D SIMD datapath!

Running Example — CONV1D

5

for(x=0; x < 16; x++)

 for(w=0; w < 4; w++)

 O[x] += I[x+w]*W[w];

A sample schedule: Unroll w-loop and Vectorize x-loop (VLEN: 16)

Input Weight Output=⊗
16419

 O(0:15) += W(0) * I(0:15)
 O(0:15) += W(1) * I(1:16)
 O(0:15) += W(2) * I(2:17)
 O(0:15) += W(3) * I(3:18)

Vector notation
How to exploit multiple columns

of 2D vector substrate?

15 Input (I) elements in common.
How to reuse them without loading again?

No direct support for broadcast operations

No direct support for unaligned loads

 HALIDE CODE: O(x) += W(w) * I(x+w);

1) Exploiting Vector Register Reuse

6

• Build “temporal reuse graph” with nodes being vector loads

• Edge exists b/w nodes if there is at least one element in common

• AI Engine allows to create logical vector registers of length up to 1024 bits

• Identify (aligned) connected components and assign each component to a vector

register that can subsume the individual vector loads of the component.

• Use shuffle interconnection network to select desired elements

 O(0:15) += W(0) * I(0:15)
 O(0:15) += W(1) * I(1:16)
 O(0:15) += W(2) * I(2:17)
 O(0:15) += W(3) * I(3:18)

2) Grouping 1D Vector Operations

7

 O(0:15) += W(0) * I(0:15)
 O(0:15) += W(1) * I(1:16)
 O(0:15) += W(2) * I(2:17)
 O(0:15) += W(3) * I(3:18)

All the 4 operations are performed with a single load of V1 and V2 (maximum reuse)

Evaluation: CONV2D’s in CV (256x16)

8

• Expert-written codes are available only for 3x3 and 5x5 filters
• Available as part of the Xilinx’s AI Engine compiler infrastructure

• Auto-tuner was able to find better schedules

• Especially non-trivial unroll and jam factors

M
AC

s/
C

yc
le

0

10

20

30

40

3x3 (32-bit) 5x5 (32-bit) 3x3 (16-bit) 5x5 (16-bit) Geo. Mean (32-bit) Geo. Mean (16-bit)

32.00

8.00

32.0032.00

8.008.00

22.69

7.87

23.65
21.76

7.917.83

20.45

7.20

23.30

17.95

7.556.85

Expert-Written Our approach with auto-tuner AI Engine Peak

 HALIDE CODE: O(x, y) += W(r, s) * I(x+r, y+s);

Evaluation: CONV2D’s in CNN’s (128x2x16)

9

• REG-CONV2D (3x3, 5x5, 7x7)
• Vectorization along Output width and Reduction along Filter channels

• PW-CONV2D (1x1), SS-CONV2D (1x3, 3x1), FC-CONV2D (1x1)
• Vectorization along Output channels and Reduction along Filter channels

• DS-CONV2D (3x3) — Padded each row
• Vectorization along Output width and Reduction along Filter width

M
AC

s/
C

yc
le

0

5

10

15

20

25

30

35

40

REG-3x3 REG-5x5 REG-7x7 PW-1x1 SS-1x3 SS-3x1 DS-3x3 FC-1x1 Geo. Mean

22.53

15.77
19.69

22.3422.47
24.94

28.37
26.60

22.62

7.677.947.467.887.897.757.837.457.19

Our approach with auto-tuner for 32-bit types (AI Engine Peak: 8 MACs/cycles)
Our approach with auto-tuner for 16-bit types (AI Engine Peak: 32 MACs/cycles)

HALIDE CODE for REG CONV2D: O(x, y, k, n) += W(r, s, c, k) * I(x+r, y+s, c, n);

Non-trivial data-layout choices

10

• 16-bit REG-CONV2D (3x3)
• Vectorization along Output width and Reduction along Filter channels

• For the fused vector operation (W1xI1 + W2 x I2)

• Data for (I1, I2) should be in a single vector register for the operation

• I1(0) and I2(0) should be adjacent for shuffle network constraints

• (C/2)Y’X’(2) refers to first laying out an input block of two channels followed by
width, height, and remaining channels.

Summary and Related Work

11

• Related work
• 2D SIMD data paths and shuffle networks are unique to the AI Engine

• AFWK, vector unit of PEPSC architecture is the only closely related work

• A greedy approach in their compiler to identify fusible operations

• Summary
• Manually writing vector code for high-performant tensor convolutions achieving

peak performance is extremely challenging!

• Domain-specific compilation can be the key!

• Proposed a convolution-specific IR for easier analysis and transformations

• Our approach (Vyasa) can work for any convolution variant regardless of its

variations and shapes/sizes.

• Achieved close to the peak performance for a variety of tensor convolutions

