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Key architectural features of Al Engine

1) 2D SIMD datapath for fixed point

Abstract view of Al Engine

e Reduction within a row/lane
e #Columns depend on operand precision

e 32-bit types: 8 rows x 1 col
Vector register file (256B) e 16-bit types: 8 rows x 4 col (or)

\l/ 16 rows x 2 col

Local memory (128KB)

Shuffle (interconnect) network * 8-bit types: 16 rows x 8 col
Cc/‘\37 -
2) Shuffle Interconnection network
Lo X+ % - +%

e Between SIMD and vector register file
e Supports arbitrary selection of
elements from a vector register
Lis *+x - +X e Some constraints for 16-/8-bit types
e Selection parameters are provided via
Fixed Point SIMD Unit vector intrinsics

L1 X+X - +X



Problem Statement & Challenges

Problem statement: How to implement high-performance
primitives for tensor convolutions on Al Engine?

» Current practice: Programmers manually use vector intrinsics to
program 2D SIMD unit and also explicitly specify shuffle network
parameters for data selection

» Challenges: Error prone, written code may not be portable to a
different schedule or data-layouts, daunting to explore all choices to
find best implementation, tensor convolutions vary in sizes and types

Our approach: Vyasa, a domain-specific compiler to
generate high performance primitives for tensor
convolutions from a high-level specification!




Our high-level approach (Vyasa)

Tensor convolution
specification,
workload sizes

Lowering to Halide IR B
T < Auto-tuner
* (exploring
Halide 1) Translation to Triplet loop and
representation data-layout
Modules 1 optimizations)
A
2) Lazy stores Cycles
I | v v
3) Vector register reuse + handling Opti Q—U—tgit g
unaligned loads, scalar broadcast ptimized c-code

)

4) Fusion of vector operations for

the 2D SIMD datapath
5) Code generation (including better > Cycle-accurate
interleaving of loads/stores/MACs) simulator

C-code

In this talk, | focus on step-3 and step-4
leveraging shuffle network and 2D SIMD datapath!
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Running Example — CONV1D

HALIDE CODE: O(x) += W(w) * I(x+w); for(x=0; x < 16; X++)

] _ for(w=0; w< 4; w++)
® _ . S O[x] 4= |[X+W]*W[W];

< 19 > — 16

A sample schedule: Unroll w-loop and Vectorize x-loop (VLEN: 16)

Vector notation

O(0:15) +5 W(0) * I(0:15)— How to exploit multiple columns
O(0:15) += W(1) *|I(1:16) of 2D vector substrate?

O(0:15) += \ 15 Input (I) elements in common.
O(0:15) +=|W/(3)|*|I(3:18) How to reuse them without loading again?

No direct support for unaligned loads

No direct support for broadcast operations



1) Exploiting Vector Register Reuse

1(0:15) 1(1:16)

0(0:15) += W/(0) *|1(0:15)
0(0:15) += »
0(0:15) +=
o) (01 5) += 1(3:18) 1(2:17)
Connected component
V1 — 1(0:31)

* Build “temporal reuse graph” with nodes being vector loads
* Edge exists b/w nodes if there is at least one element in common

* Al Engine allows to create logical vector reqgisters of length up to 1024 bits

* |dentify (aligned) connected components and assign each component to a vector
register that can subsume the individual vector loads of the component.

e Use shuffle interconnection network to select desired elements



2) Grouping 1D Vector Operations

0(0:15) +=[W(0) *1(0:15)] 0 .
0(0:15) +=|W(1) * I(1:16) [wo [Tway | wo [ we [ we [ we [ we | wo) | V2
0(0:15) +=
0(0:15) +=|W(3) * 1(3:18) oo =

1(0:15) 1B o [Wwiw@e @il o L bwe] an [wuy ] . | ey | V1

0 31
1(3:18) —a) 0(0:15) = +
Connected component 0
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SO
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Connected component 0
V2 — W(0:7)

> b) O(0:15) += +

All the 4 operations are performed with a single load of V1 and V2 (maximum reuse)
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Evaluation: CONV2D’s in CV (256x16)

HALIDE CODE: O(x, y) += W(r, S) * I(X+r, y+S);
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* Expert-written codes are available only for 3x3 and 5x5 filters
* Available as part of the Xilinx’s Al Engine compiler infrastructure

* Auto-tuner was able to find better schedules
* Especially non-trivial unroll and jam factors



Evaluation: CONV2D’s in CNN’s (128x2x16)

HALIDE CODE for REG CONV2D: O(x, y, k, n) += W(r, s, c, k) * I(x+r, y+s, c, n);

40

Our approach with auto-tuner for 32-bit types (Al Engine Peak: 8 MACs/cycles)
B Our approach with auto-tuner for 16-bit types (Al Engine Peak: 32 MACs/cycles)
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* REG-CONV2D (3x3, 5x5, 7x7)

* \lectorization along Output width and Reduction along Filter channels
o PW-CONV2D (1x1), SS-CONV2D (1x3, 3x1), FC-CONV2D (1x1)

* \ectorization along Output channels and Reduction along Filter channels
e DS-CONV2D (3x3) — Padded each row

* Vectorization along Output width and Reduction along Filter width
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Non-trivial data-layout choices

% SLY Input layout scheme (C/2)Y’X’(2)
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% Fused Vector Multiplication: W1 * 11 + *

=

e 16-bit REG-CONV2D (3x3)
* Vectorization along Output width and Reduction along Filter channels
* For the fused vector operation (W1xI1 + W2 x 12)
» Data for (I1, 12) should be in a single vector register for the operation
* [1(0) and I2(0) should be adjacent for shuffle network constraints

o (C/2)Y’X’(2) refers to first laying out an input block of two channels followed by
width, height, and remaining channels.
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Summary and Related Work

e Summary
* Manually writing vector code for high-performant tensor convolutions achieving

peak performance is extremely challenging!
e Domain-specific compilation can be the key!
* Proposed a convolution-specific IR for easier analysis and transformations
* QOur approach (Vyasa) can work for any convolution variant regardless of its

variations and shapes/sizes.
* Achieved close to the peak performance for a variety of tensor convolutions

* Related work
» 2D SIMD data paths and shuffle networks are unique to the Al Engine

» AFWK, vector unit of PEPSC architecture is the only closely related work
* A greedy approach in their compiler to identify fusible operations
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