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Key architectural features of AI Engine
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1) 2D SIMD datapath for fixed point 
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2) Shuffle Interconnection network

• Between SIMD and vector register file

• Supports arbitrary selection of 

elements from a vector register

• Some constraints for 16-/8-bit types


• Selection parameters are provided via 
vector intrinsics

• Reduction within a row/lane

• #Columns depend on operand precision

• 32-bit types:   8 rows x  1 col

• 16-bit types:   8 rows x  4 col (or)


                                   16 rows x  2 col

•   8-bit types: 16 rows x  8 col



Problem Statement & Challenges
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Problem statement: How to implement high-performance 
primitives for tensor convolutions on AI Engine?

• Current practice: Programmers manually use vector intrinsics to 
program 2D SIMD unit and also explicitly specify shuffle network 
parameters for data selection

Our approach: Vyasa, a domain-specific compiler to 
generate high performance primitives for tensor 

convolutions from a high-level specification!

• Challenges: Error prone, written code may not be portable to a 
different schedule or data-layouts, daunting to explore all choices to 
find best implementation, tensor convolutions vary in sizes and types



Our high-level approach (Vyasa)
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In this talk, I focus on step-3 and step-4  
leveraging shuffle network and 2D SIMD datapath!



Running Example — CONV1D

5

for(x=0; x < 16; x++)

  for(w=0; w < 4; w++)

    O[x] += I[x+w]*W[w];

A sample schedule: Unroll w-loop and Vectorize x-loop (VLEN: 16)

Input Weight Output=⊗
16419

   O(0:15) += W(0) * I(0:15) 
   O(0:15) += W(1) * I(1:16)     
   O(0:15) += W(2) * I(2:17) 
   O(0:15) += W(3) * I(3:18)

Vector notation
How to exploit multiple columns  

of 2D vector substrate?

15 Input (I) elements in common. 
How to reuse them without loading again?

No direct support for broadcast operations

No direct support for unaligned loads

             HALIDE CODE:   O(x) += W(w) * I(x+w);



1) Exploiting Vector Register Reuse
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• Build “temporal reuse graph” with nodes being vector loads

• Edge exists b/w nodes if there is at least one element in common


• AI Engine allows to create logical vector registers of length up to 1024 bits 

• Identify (aligned) connected components and assign each component to a vector 

register that can subsume the individual vector loads of the component.

• Use shuffle interconnection network to select desired elements

   O(0:15) += W(0) * I(0:15) 
   O(0:15) += W(1) * I(1:16)     
   O(0:15) += W(2) * I(2:17) 
   O(0:15) += W(3) * I(3:18)



2) Grouping 1D Vector Operations
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   O(0:15) += W(0) * I(0:15) 
   O(0:15) += W(1) * I(1:16)     
   O(0:15) += W(2) * I(2:17) 
   O(0:15) += W(3) * I(3:18)

All the 4 operations are performed with a single load of V1 and V2 (maximum reuse)



Evaluation: CONV2D’s in CV (256x16)
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• Expert-written codes are available only for 3x3 and 5x5 filters 
• Available as part of the Xilinx’s AI Engine compiler infrastructure 


• Auto-tuner was able to find better schedules 

• Especially non-trivial unroll and jam factors
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             HALIDE CODE:   O(x, y) += W(r, s) * I(x+r, y+s);



Evaluation: CONV2D’s in CNN’s (128x2x16)
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• REG-CONV2D (3x3, 5x5, 7x7) 
• Vectorization along Output width and Reduction along Filter channels


• PW-CONV2D (1x1), SS-CONV2D (1x3, 3x1), FC-CONV2D (1x1) 
• Vectorization along Output channels and Reduction along Filter channels


• DS-CONV2D (3x3) — Padded each row 
• Vectorization along Output width and Reduction along Filter width
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Our approach with auto-tuner for 32-bit types (AI Engine Peak: 8 MACs/cycles) 
Our approach with auto-tuner for 16-bit types (AI Engine Peak: 32 MACs/cycles) 

HALIDE CODE for REG CONV2D:   O(x, y, k, n) += W(r, s, c, k) * I(x+r, y+s, c, n);



Non-trivial data-layout choices
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• 16-bit REG-CONV2D (3x3) 
• Vectorization along Output width and Reduction along Filter channels

• For the fused vector operation (W1xI1 + W2 x I2)


• Data for (I1, I2) should be in a single vector register for the operation

• I1(0) and I2(0) should be adjacent for shuffle network constraints


• (C/2)Y’X’(2) refers to first laying out an input block of two channels followed by 
width, height, and remaining channels.



Summary and Related Work
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• Related work 
• 2D SIMD data paths and shuffle networks are unique to the AI Engine


• AFWK, vector unit of PEPSC architecture is the only closely related work

• A greedy approach in their compiler to identify fusible operations

• Summary 
• Manually writing vector code for high-performant tensor convolutions achieving 

peak performance is extremely challenging!

• Domain-specific compilation can be the key! 

• Proposed a convolution-specific IR for easier analysis and transformations

• Our approach (Vyasa) can work for any convolution variant regardless of its 

variations and shapes/sizes.

• Achieved close to the peak performance for a variety of tensor convolutions


