
Marvel: A Data-centric Compiler for DNN Operators on
Spatial Accelerators

Prasanth Chatarasi
Georgia Tech

cprasanth@gatech.edu

Hyoukjun Kwon
Georgia Tech

hyoukjun@gatech.com

Saurabh Malik
Georgia Tech

smalik48@gatech.edu
Natesh Raina

Georgia Tech
nateshraina@gatech.edu

Vaisakh Haridas
Georgia Tech

vharidas3@gatech.edu

Angshuman Parashar
NVIDIA

aparashar@nvidia.com

Michael Pellauer
NVIDIA

mpellauer@nvidia.com

Tushar Krishna
Georgia Tech

tushar@ece.gatech.edu

Vivek Sarkar
Georgia Tech

vsarkar@gatech.edu

ABSTRACT
The efficiency of a spatial DNN accelerator depends heavily
on the compiler and its cost model ability to generate opti-
mized mappings for various operators of DNN models on to
the accelerator’s compute and memory resources. But, exist-
ing cost models lack a formal boundary over the operators
for precise and tractable analysis, which poses adaptability
challenges for new DNN operators. To address this challenge,
we leverage the recently introduced Maestro Data-Centric
(MDC) notation. We develop a formal understanding of DNN
operators whose mappings can be described in the MDC nota-
tion, because any mapping adhering to the notation is always
analyzable by the MDC’s cost model. Furthermore, we intro-
duce a transformation for translating mappings into the MDC
notation for exploring the mapping space.

Searching for the optimal mappings is challenging because
of the large space of mappings, and this challenge gets exac-
erbated with new operators and diverse accelerator configura-
tions. To address this challenge, we propose a decoupled off-
chip/on-chip approach that decomposes the mapping space
into off-chip and on-chip subspaces, and first optimizes the
off-chip subspace followed by the on-chip subspace. The
motivation for this decomposition is to reduce the size of
the search space dramatically and also to prioritize the op-
timization of off-chip data movement, which is 2-3 orders
of magnitude more compared to the on-chip data movement.
We implemented our approach in a tool called Marvel, and
another major benefit of our approach is that it is applicable
to any DNN operator conformable with the MDC notation.

Overall, our approach reduced the mapping space by an
O(1010) factor for the four major CNN models (AlexNet,
VGG16, ResNet50, MobileNetV2), while generating map-
pings that demonstrate a geometric mean performance im-
provement of 10.25× higher throughput and 2.01× lower
energy consumption compared with three state-of-the-art
mapping styles from past work. We also evaluated our ap-
proach over the GEMM, LSTM, and MLP workloads and
also compared with the optimizers from past work.

1. INTRODUCTION
Deep learning (DL) is a fundamental technology for many

emerging applications such as autonomous driving [4], trans-
lation [39], and image classification [30], with accuracy close
to, and even surpassing, that of humans [14, 19, 38]. Achiev-
ing low latency and energy goals with stringent computa-
tion and memory constraints of deep neural network models
(DNNs) for mobile [1] and edge [2] devices has emerged as
an important challenge. To cope with this challenge, spe-
cialized hardware accelerators for DNN inference are being
developed and deployed [2, 9, 10, 26, 40]. Most of these ac-
celerators are “spatial", i.e., they are built by interconnecting
hundreds to thousands of processing elements (PEs). They
achieve high throughput by exploiting parallelism over the
PEs and energy efficiency by maximizing data reuse within
the PE array via direct data forwarding between PEs and the
use of scratchpad memories [6, 7, 18, 24, 26, 28, 34, 43].

Figure 1: Overview of the design-time flow for computer
architects developing new accelerators, and the compila-
tion flow for ML programmers leveraging the accelera-
tors. Scope of this work is the mapping explorer and the
loop optimizer in the above diagram.

The efficiency of accelerators depends heavily on the com-
piler’s ability to generate optimized mappings for various
operators of DNN models on to the accelerator’s compute

1

ar
X

iv
:s

ub
m

it/
32

06
79

1
 [

cs
.D

C
]

 1
1

Ju
n

20
20

and memory resources. A mapping involves parallelization,
tiling, and scheduling strategies [21, 27]. Optimized com-
pilers (or mappers) optimizing various DNN operators are
necessary during compile-time for ML programmers, and
design-time for computer architects to understand reuse and
data movement behaviors to design a new accelerator, as
shown in Figure 1. Thus, expressing DNN mappings and
determining optimal ones is a crucial component of DNN
deployment on accelerators.

Mappings are often expressed as loop nests, a syntax that
resembles a simple imperative programming language with
explicit parallelism. Many cost models such as TimeLoop [27],
DMazeRunner [12], Interstellar [41] are developed over the
loop nest description of mappings. The loop nests syntax is
very generic and can help architects/compilers in expressing
a wide range of operator mappings, but the underlying cost
models may not analyze all possible mappings expressible in
loop nests. Furthermore, these cost models do not have a for-
mal boundary over DNN operators for precise and tractable
analysis. Having such no formal boundaries can bring adapt-
ability challenges to these cost models in the compiler in-
frastructures and also to computer architects for design-time
exploration of new DNN operators onto accelerators.

In this paper, we address the above challenge. We lever-
age the recently introduced “Maestro Data-Centric” (MDC)
notation [21] for expressing mappings. MDC is promising
because any mapping adhering to the notation can be analyz-
able using the MDC’s cost model. Moreover, the notation
explicitly defines data mapping and organization, instead of
inferring it from loop nests. The overall focus of this work is
on (1) developing a formal understanding of DNN operators
whose mappings can be described in the MDC notation, (2)
introducing a transformation for translating mappings into the
MDC notation for exploring the mapping space, and finally
(3) proposing an efficient exploration strategy to quickly nav-
igate the large mapping space of DNN operators. The key
contributions are briefly described below.

1) Conformable DNN operators. The promising aspect
of the MDC notation, i.e., analyzability, comes at the cost
of its expressiveness. In this work, we introduce a formal
set of rules (Section 3) in identifying DNN operators whose
mappings can be described in the MDC notation. We call
an operator satisfying the formal rules as the conformable
operator, and Table 1 lists the conformability of the popular
operators with the MDC notation.

2) Transformation. The MDC notation is powerful in ex-
pressing and reasoning complex mappings of DNN operators
onto the diverse spatial accelerators, but explicitly writing
and exploring such mappings can be error-prone and tedious.
Computer architects [27] and DNN compiler frameworks [5]
view the operators and their mappings majorly in the loop
nest form. Hence, we introduce a transformation (Section 4)
that translates a mapping specified in the loop nest form to the
MDC notation and can help both the architects and compilers
for mapping space exploration.

3) Mapping space exploration. The efficiency of any
mapping is tightly cross-coupled with both the algorithmic
aspects of DNN operators and the microarchitectural aspects
of accelerators. Searching for the optimal mapping is chal-
lenging because of a massive space of possible loop transfor-

mations on the operators. For example, there are over 1019

valid mappings for the CONV2D on average for mapping
ResNet50 [16] and MobileNetV2 [31] on a representative
DNN edge accelerator. This challenge gets exacerbated with
new operators (e.g., depth-wise) and diverse hardware accel-
erator configurations. Much of the prior work [24, 42, 43, 44]
targeted hardware with limited capabilities or fixed certain
aspects of the mapping space such as choice of parallel loops
and loop orders [12, 24, 25, 41, 43]. Approaches supporting
broader classes of architectures and mappings suffer from a
combinatoric explosion in the size of mapping space.

Our approach for the mapping problem is motivated by the
observation that the off-chip data movement between DRAM
and accelerator is 2-3 orders of magnitude more compared
to the on-chip data movement involving the PE array and
the local scratchpad buffers [7, 37]. Hence, we propose an
approach (Section 5) referred as “decoupled off-chip/on-chip"
that decomposes the mapping space into two subspaces, i.e.,
off-chip and on-chip subspaces, and first optimizes the off-
chip subspace followed by exploring the on-chip mapping
subspace constructed with the optimal mappings from the off-
chip subspace. In contrast to prior work [12, 27, 41], we use
different approaches and cost models for these subspaces, i.e.,
a classical distinct-block (DB) locality cost model [15, 32] to
explore the off-chip subspace, and the MDC’s cost model [21]
for the on-chip subspace.

We implemented the above approach in a tool called “Mar-
vel”, and our approach is applicable to any operator con-
formable with the MDC notation. Given a conformable DNN
operator, workload sizes, and a target accelerator configu-
ration, Marvel explores the mapping space of the operator
using the decoupled approach and then outputs the mappings
optimized for runtime and energy. Overall, our approach
reduced the mapping space by an O(1010) factor for the
four major CNN models (AlexNet, VGG16, ResNet50, Mo-
bileNetV2), while generating mappings that demonstrate a
geometric mean performance improvement of 10.25× higher
throughput and 2.01× lower energy consumption compared
with three state-of-the-art mapping styles from past work.
We also evaluated our approach over the GEMM, LSTM,
and MLP workloads and also compared Marvel generated
mappings with the optimizers from past work.

2. BACKGROUND
In this section, we provide a brief overview of the spatial

DNN accelerators and also the MDC notation to describe
mappings of a DNN operator onto the accelerators.

2.1 Spatial DNN Accelerators
Spatial DNN accelerators based on ASICs and FPGAs have

emerged to address extreme demands on performance and
energy-efficiency of CNN layers [6, 7, 18, 26, 28, 34]. Such
accelerators are built using an array of processing elements
(PEs) to provide high parallelism and use direct communica-
tion instead of via shared memory for energy-efficiency. An
abstract model of spatial accelerators is shown in fig. 2, where
each PE of an accelerator consists of a single/multiple ALU(s)
dedicated for multiply-accumulate operations (MACs) and
a local scratchpad (L1 buffer). Also, accelerators employ
various network-on-chips (NoCs) for direct communication

2

PE

Shared Buffer (L2 Scratch Pad)

Network-on-Chip (NoC)

L1 Scratch Pad

ALU (MAC Unit)

To/From DRAM

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

Figure 2: Abstract spatial accelerator model which is per-
vasive in many state-of-the-art accelerators [7, 18, 22, 26].

among PEs and between PE array and L2 scratchpad buffer.
The interconnection network often supports multi-casting
data to multiple PEs, which can reduce the total number of
data reads from L2 buffer to PEs. Unlike GPU cores, PEs can
communicate with adjacent PEs (data forwarding) using a
NoC, which can significantly reduce the energy consumption
for expensive L2 buffer accesses. Accelerators also typically
employ a large shared L2 scratchpad buffer to stage data from
DRAM and also partial accumulations from PE arrays. Both
L1 and L2 scratchpad buffers are software-controlled memo-
ries, i.e., programmer/compiler directly controls contents of
the buffer, unlike cache memories, which implicitly manages
them, and this is because the memory traffic in accelerators is
known in advance. Many spatial accelerators can be further
interconnected together to create a scale-out system [10].

2.2 MDC Notation
The Maestro Data-Centric (MDC) notation for a DNN

operator mapping onto a spatial accelerator consists of two
aspects, i.e., 1) Computation and tensor sizes, and 2) Data
mapping directives over tensor dimensions. A sample map-
ping of the CONV1D operator in the MDC notation is shown
in fig. 3(B). A major novelty of the MDC notation is that
the data mappings of tensors across space (PEs) and time are
explicitly specified using a set of data mapping directives,
which makes the MDC’s cost-model to estimate data move-
ment and reuse behaviors of a mapping precisely and quickly.
We briefly describe the data mapping directives of the MDC
notation with the mapping in fig. 3(B) as the example.

1) TemporalMap (size, offset) d specifies a distribution
of the dimension d of a tensor across time steps in a PE,
and the mapped set of dimension indices is same across
PEs in a given time step. The size parameter refers to the
number of contiguous indices mapped in the dimension d to
each PE, and the offset parameter describes the shift in the
starting indices of d across consecutive time steps in a PE.
For instance, the directive TemporalMap(2,2) dw in the
running example represents the distribution of first dimension
(dw) of the weight tensor with two indices mapped in each
time step (i.e., dw={0,1} in PE0 and PE1 at t = 0). Also, the
offset of two denotes the increment in dw index after each

Figure 3: A mapping of the CONV1D in the MDC nota-
tion along with the visualization of its data mappings.

time step (i.e., dw={2,3} in PE0 and PE1 at t = 1) till the
extent of dw dimension is explored.

2) SpatialMap (size, offset) d specifies a distribution of
the dimension d of a tensor across PEs. The size parameter
refers to the number of contiguous indices mapped in the di-
mension d to each PE, and the offset describes the shift in
the starting indices of d across consecutive PEs. For instance,
the directive SpatialMap(1,1) dO in the running example
represents the distribution of first dimension (dO) of the out-
put tensor with one index mapped to each PE (i.e., dO={0} in
PE0 and dO={1} in PE1 at t = 0). If the number of PEs is not
sufficient to cover all indices of the dimension mapped, then
the mapping is folded over time across the same set of PEs.

3) Directive order. The sequence of spatial and tempo-
ral map directives in a mapping dictates the change of data
mappings to PEs across time. Similar to a loop order, all the
dimension indices corresponding to a mapping directive are
explored before its outer mapping directive in the sequence
begins exploring its next set of indices. For instance, the
sequence of directives in the running example, i.e., spatial
map over dO followed by temporal map over dW dictates that
all the dimension indices of the weight tensors need to be ex-
plored before exploring the next set of dO indices. This order
results in accumulating the partial results of an output before
computing another output, popularly referred to as “output
stationary” mapping [13]. However, the sequence notation
has a limitation that it cannot capture scenarios where more
than one dimension index is simultaneously changing over
time (except at the dimension boundaries).

4) Clusters (size) logically groups multiple PEs or nested
sub-clusters with the group size as the size parameter. For
example, Cluster (2) directive on an accelerator with ten
PEs arranges the PEs into five clusters with the cluster size
as two. All the mapping directives above a cluster direc-
tive operate over the introduced logical clusters, while those
below the cluster directive operate within a logical cluster.
The cluster directive is extremely useful in exploiting spa-
tial distribution of more than one tensor dimensions (e.g.,
row-stationary mapping [7]). Also, the directive helps in

3

constructing hierarchical accelerators by recursive grouping.
The above aspects of the MDC notation can help in pre-

cisely specifying a wide range of mappings, including popular
and sophisticated mapping styles such as row-stationary in
Eyeriss [7], weight-stationary in NVDLA in [26], output-
stationary in ShiDianNao [13] accelerators. However, its
not clearer if all mapping behaviors of an operator can be
represented in the MDC notation.

3. CONFORMABLE DNN OPERATORS
In this section, we introduce formal rules in identifying

conformable DNN operators whose mappings (reuse, paral-
lelization and tiling strategies) can be described using the
MDC notation. We discuss rules over the abstract loop nest
notation of DNN operators without any transformations for
reuse and parallelization (e.g., CONV1D in fig. 4).

R1: A conformable DNN operator in the abstract loop
nest form must be a perfectly nested loop without any
conditional statements.
The MDC notation restricts its computation to be uniform
across all PEs at all time-steps. This restrict is satisfied if the
computation is enclosed in a perfectly nested loop without any
conditional statements. Most of the DNN operators such as
CONV2D, GEMM, MLP (more in table 1) can be expressed
in the form of perfectly nested loops without any conditionals.
But, there can be implementation of certain operators such
as fused convolutions, where each PE requires executing
the non-uniform computation. Hence, such operators are
discarded and are non-conformable to the MDC notation.

R2: The perfectly nested loop must not have any de-
pendences (flow, anti, output) except reduction depen-
dences, and thus the loops can be freely reordered.
The MDC notation restricts the input and output tensors of
an operator to be different, and this results in not having any
flow and anti dependences between the tensors. However,
the notation can support reduction operations (e.g., add, max,
min), and this leads to supporting reduction dependences, i.e.,
flow, anti, output dependences only on the output tensor. Sim-
ilar to the rule R1, most of the DNN operators mostly have
only reduction dependences, except few operators such as
parametric multi-step LSTMs which have flow dependences.

R3: The dimension dependence graph (DDG) of the
perfectly nested loop must have a topological ordering,
and the subscripts of dependent dimension variables of
the DDG graph must be in the form of linear combina-
tion of its loop iterators.
The directive order (sequence of mapping directives) of the
MDC notation dictates the change of the data mappings to
PEs across time. As described in the section 2.2, the direc-
tive order has limitations in capturing more than one tensor
dimension variable changing simultaneously over the time
(except at boundaries). We introduce a directed graph called
Dimension Dependence Graph (DDG) to find the possibility
of such data movement behaviors in a DNN operator.

Each node of a DDG graph denotes a tensor dimension
variable along with the array subscript referenced in that
dimension. For instance, the node (dI:i0+i1) in fig. 4(a)
represents the tensor subscript i0+i1 used in the input tensor
dimension with name dI . The edges of the DDG are con-
structed as follows: 1) An edge is added from a node having

Figure 4: The dimension dependence graph (DDG) of
simple operators such as CONV1D and stencil satisfy-
ing the rule R3, and an example violating the rule R3.
dO/dI /dW : tensor dimension variables corresponding to
the output, input, and weight tensors.

a SIV/MIV subscript1 to another node having a MIV sub-
script if there is a common loop iterator in their subscripts.
For e.g., there is a directed edge from the node (dO:i0) to
(dI:i0+i1) in fig. 4(a) since they have a loop iterator i0 in
common. 2) All the SIV subscripts are grouped based on
their loop iterators, and then edges are added from the SIV
subscript of a group having the lowest constant value (ran-
domly choose if there exists multiple) to other SIV subscripts
in the same group. For e.g., there is a directed edge from
the node (dI:i0) to all the nodes (dI:i0 + 1), (dI:i0 + 2),
and (dO:i0) in fig. 4(b). 3) If there is a loop iterator (say i)
dependent on other loop iterators (say j) in its loop bounds,
then construct an edge from a node with subscript having the
loop iterator i to other nodes having the loop iterator j in
their subscripts.

Now, the possibility of having multiple dimension vari-
ables changing simultaneously is reduced to the problem of
finding a topological ordering in the DDG graph. In essence,
the absence of a topological ordering indicates the presence
of mutually dependent dimension variables (e.g., example
in fig. 4(c)). In the presence of a topological ordering, the
MDC notation requires the data mappings of independent
dimension variables to be specified, and these variables are
identified from the nodes of the DDG graph having zero in-
degree. For e.g., in the case of CONV1D in fig. 4(a), only
the data mappings of dimension variables related to output
and weight tensors must be specified, and the dimension
variable related to the input tensor is inferred by the underly-
ing MDC’s cost model. Hence, the subscripts of dependent
dimension variables need to be linear expressions of loop
iterators so as to be analyzable by the MDC’s cost model. In
addition, the MDC notation expects to have only one data
mapping over an independent dimension variable. If there
exists more than one node with zero in-degree in the DDG
graph associated with the same dimension variable, then we
consider that DNN operator to be non-conformable.

1Single Index Variable (SIV) subscript involves one loop iterator,
whereas Multiple Index Variable (MIV) subscript involves more
than one loop iterator [3].

4

R4: The subscripts associated with the independent
dimension variables of the DDG graph must be in the
form of linear combinations of its loop iterators with the
positive unit coefficients and no constants.

A mapping directive (either spatial or temporal) over a
dimension variable restricts the variable to start from zero
and increase with unit stride. These restrictions don’t allow
the dimension variable to have strided increments or negative
strides. To characterize the implication of above restrictions,
we assume the abstract loop nest form of the DNN opera-
tor to be normalized, i.e., its loop iterators start from zero
and have unit strides. To support the restricts imposed the
mapping directives, each subscript (in the normalized form)
associated with an independent dimension variable must be
in the form of a linear combination of the subscript’s loop
iterators with the positive unit coefficients and no constants.
For e.g., the subscript i0 associated with the dimension vari-
able dO in fig. 4(a) is in the linear form of its iterators (i0)
with coefficient as one and no constant.

With positive unit coefficients and no constants, the SIV
subscript associated with an independent dimension variable
is simply an unique loop iterator (e.g., i0 for dO, i1 for dW
in fig. 4(a)). Furthermore, the MIV subscript associated with
an independent dimension variable is also in the form of
adding the subscript’s loop iterators. These loop iterators
cannot be part of any subscripts associated with other dimen-
sion variables; otherwise, their in-degree wouldn’t have been
zero. Hence, the loop iterators corresponding to such MIV
subscript can be merged into a single loop. Overall, the sub-
scripts associated with each of the independent dimension
variables are simply unique loop iterators (e.g., i0 for dO, i1
for dW in fig. 4(a)).

Finally, an operator is said to MDC conformable if it sat-
isfies all the four rules described above. Table 1 lists the set
of popular DNN operators and the conformability of these
operators with the MDC notation. As can be seen, the MDC
notation can capture most of the DNN operators except para-
metric LSTM’s, and the mappings of these operators can be
analyzable by the MDC’s cost model.

DNN
Operator Types R1 R2 R3 R4 Conformable

to MDC
CONV1D Regular Y Y Y Y Y

CONV2D

Regular Y Y Y Y Y
Point-wise,
Depth-wise Y Y Y Y Y

Strided,
Dilated Y Y Y Y Y

MLP Fully
connected Y Y Y Y Y

Pooling Max, Avg Y Y Y Y Y

GEMM Regular Y Y Y Y Y
Triangular Y Y Y Y Y

LSTM Single cell Y Y Y Y Y
Parametric
multi-cell Y N Y Y N

Element
wise

Residual Y Y Y Y Y
ReLU Y Y Y Y Y

Stencils Regular Y Y Y Y Y

Table 1: Conformability of the popular DNN operators
onto the MDC notation (Y/N refers to YES/NO).

4. TRANSFORMATION
The MDC notation is powerful in expressing and rea-

soning complex mappings of DNN operators onto the di-
verse spatial accelerators, but explicitly writing and explor-
ing such mappings can be error-prone and tedious. Com-
puter architects [27] and DNN compiler frameworks [5] view
the operators and their mappings majorly in the loop nest
form [24, 27, 43]. This section introduces a transformation
to translate a mapping of the conformable DNN operator in
the loop-nest form into the MDC notation. In this work, we
assume the target spatial accelerators having three levels of
the memory hierarchy (private L1 buffer, shared L2 buffer,
and DRAM). However, our transformation can be easily ex-
tendable to more levels of hierarchy.

As described in the section 2.2, the MDC notation consists
of two aspects, i.e., 1) Computation and tensor sizes, and 2)
Data mapping directives over independent tensor dimensions.
The statements enclosed in the perfectly nested loop form
of the conformable DNN operator are used as the computa-
tion, and the tensor sizes are extracted from the workload
configuration. The computation and tensor sizes of the MDC
notation remains the same for each mapping of the opera-
tor. Then, the dimension dependence graph of the operator
is constructed to identify the set of independent tensor di-
mension variables (having zero in-degree). If there are no
such independent dimension variables, then the operator is
discarded as non-conformable. The rest of the section focuses
on generating data mapping directives for each mapping.

4.1 Data Mapping directives
According to the rule R2, the loops of a conformable DNN

operator can be freely reordered, so it is safe to perform
multi-level tiling to exploit temporal reuse across each level
of the memory hierarchy and also to exploit parallelism of the
accelerator. Each tiling, reuse and parallelization behavior
of an operator onto a spatial accelerator is referred to as
a “mapping”. An example of the mapping of a CONV1D
operation over a 3-level accelerator is shown in fig. 5 (C), and
the different aspects of the mapping are described below.
1) Multi-level tiling tile sizes. A mapping includes tile
sizes of all loop iterators for each level of tiling, i.e., 1) Level-
1 tiling for the private L1 buffer, 2) Level-2 tiling for the
parallelism, and 3) Level-3 tiling for the shared L2 buffer.
2) Inter-tile loop orders. A mapping also includes inter-tile
loop orders2 to describe the execution order of tiles reflecting
various reuse opportunities. E.g., the level-2 inter-tile loop
order reflects spatio-temporal reuse over the PE array, and
the level-3 inter-tile loop order reflects temporal reuse over
the on-chip L2 buffer. But, the level-1 inter-tile loop order
doesn’t reflect any reuse, because these loops are annotated
with parallelism. Also, the loop order among point-loops
doesn’t provide any reuse opportunities because there is no
more intermediate staging between the PE and its L1 buffer.

An n-level tiling will have n set of tile-loops (including
parallel loops) and a set of point-loops. Each set of loops can
have a different data movement (reuse) behavior based on its

2An n-dimensional loop nest after one level of tiling will have 2n
loops. The outer n-loops are referred to as inter-tile loops and
the later n-loops as intra-tile loops. The innermost n-loops after
multi-level tiling are called as point-loops.

5

Figure 5: A brief overview of the mapping expressed in
the loop-nest form of CONV1D, and its translation into
the MDC notation with data mapping directives.

sizes and loop order. We introduce a term called “region” to
denote a sequence of data mapping directives over indepen-
dent tensor dimension variables (e.g., Region R1 in fig. 5(d))
without any cluster directives, and each region captures the
data movement behavior present in each set of loops. Given
a mapping of the operator in the form of multi-level tile
sizes and inter-tile loop orders, our approach transforms the
mapping into the MDC notation as per the following steps.
1) Point-loops. As described in Rule 4, each subscript as-
sociated with an independent dimension variable is simply
an unique loop iterator. Our approach translates each loop
of point-loops into a temporal map directive over the cor-
responding independent dimension variable with size and
offset parameters of the directive being the point-loop size.
For, e.g., the point loop t1i with tile size as T1i in fig. 5(c)
is directly translated into TemporalMap(T1i,T1i) dO in the
region R1 shown in fig. 5(d). Since the loop order among the
point-loops doesn’t provide any reuse benefits, the directive
order in the region R1 doesn’t matter.
2) Parallel-loops. Since each independent dimension vari-
able is uniquely associated with a loop iterator, parallel exe-
cution of each loop iterator introduces a different data move-
ment behavior. Hence, for each parallel loop, we introduce a
region with a spatial map over the dimension variable asso-
ciated with the parallel loop, and the temporal maps for the
rest of the dimension variables in the region. For, e.g., there
are two regions with name R2 and R3 for the parallel loops
corresponding to t2 j and t2i, respectively. Also, the dimen-
sion dW associated with the iterator t2 j and the dimension dO
associated with the iterator t2i are translated into spatial maps
in R2 and R3 regions respectively. The size and offsets
of each spatial map over a dimension variable is derived from
the strides of the parallel loop iterators corresponding to the

dimension variable. The order of directives in each region
corresponding to a parallel loop doesn’t matter because the
number of iterations arising from the rest of the temporal
maps is one. Each region corresponding to a parallel loop
(except the innermost) is ended with a cluster directive with
size as the number of iterations in the parallel loop. For,
e.g., the region R3 is ended with a cluster directive with size
as the number of iterations of the loop t2i.
3) Inter-tile loops. For each set of tile-loops excluding par-
allel loops, our transformation generates a region by creating
a temporal map directive for each loop of the set with the
size and offset of the directive as the loop stride. For, e.g.,
the inter-tile loop t3 j with stride as T2 j in fig. 5(c) is directly
translated into TemporalMap(T2 j,T2 j)dI in the region R4
shown in fig. 5(d). The order of directives in a region is gov-
erned by the loop order among the corresponding tile-loops.
For, e.g., the level-3 inter-tile loop order (t3 j,t3i) dictates
the temporal map over dW outer compared to temporal map
over dO in region R5. Furthermore, each region is separated
by cluster directive with size one to support different data
movement behaviors across each set of tile-loops.

5. MAPPING SPACE EXPLORATION
The mapping space of a conformable DNN operator onto

an accelerator having three levels of memory hierarchy is
a cross product of valid level-1 tile sizes, level-2 tile sizes
(parallelism), level-2 inter-tile loop orders, level-3 tile sizes,
and level-3 inter-tile loop orders. For example, there are
over 1019 valid mappings for a single CONV2D operator
on average for mapping ResNet50 and MobileNetV2 on a
representative DNN edge accelerator. Because of this mas-
sive space of mappings, searching for efficient mappings is
really challenging. This challenge gets exacerbated with new
operators (e.g., depth-wise) and diverse hardware accelerator
configurations (e.g., tree-based interconnect [22]).

We consider (optional) a limited form of data-layouts, i.e.,
innermost dimension reordering [23] for the tensors of op-
erators on the DRAM. Overall, the mapping space of an
operator is a Cartesian product of six dimensions which rep-
resent different aspects of a mapping, i.e., 1) level-1 tile sizes,
2) level-2 tile sizes (parallelism), 3) level-2 inter-tile loop
orders, 4) level-3 tile sizes, 5) level-3 inter-tile loop orders,
and 6) data-layout of tensors. The first three dimensions
are grouped under “on-chip mapping subspace" since they
influence parallelization and on-chip data movement, and
the remaining three dimensions are grouped under “off-chip
mapping subspace" since they influence the off-chip data
movement.

Our approach towards the mapping space exploration is
motivated by the observation that the off-chip data movement
between DRAM and accelerator is 2-3 orders of magnitude
more compared to the on-chip data movement. Hence, we
propose an approach referred as “decoupled off-chip/on-chip"
that decomposes the mapping space into two subspaces, i.e.,
off-chip and on-chip subspaces, and first optimizes the off-
chip subspace followed by the on-chip subspace which is
constructed with the optimal mappings from the off-chip sub-
space. In contrast to prior work [12, 27, 41], we use different
approaches and cost models for these subspaces, i.e., a classi-
cal distinct-block (DB) locality cost model [15,32] to explore

6

the off-chip subspace, and the MDC’s cost model [21] for the
on-chip subspace. The overall approach is implemented as
a standalone tool (shown in fig. 6) that takes a conformable
DNN operator, workload sizes, and a target accelerator con-
figuration, then explores the mapping space of the operator
using the decoupled approach, and finally outputs the map-
pings optimized for runtime and energy.

Figure 6: An overview of our approach along with prun-
ing strategies for searching mapping space of convolu-
tions. The pruning strategies in green color preserve op-
timal mappings, whereas the strategies in red color may
prune optimal.

5.1 Solving off-chip mapping subspace
The goal of finding an optimal mapping in the off-chip

mapping subspace is to minimize off-chip data movement
between DRAM and the L2 buffer of an accelerator. In our
work, we assume the L2 buffer to be a software-managed
scratchpad buffer, and reducing the off-chip data movement3
is equivalent to finding a level-3 tile that has highest arith-
metic intensity, this is because the highest arithmetic intensity
results in higher reuse and less data transfer.

In our approach, we consider the classical distinct-block
(DB) locality cost model [15] to measure the off-chip data
movement cost, which was developed as part of the memory
cost analysis to guide automatic selection of loop transfor-
mations and also optimal tile size selections [32, 33, 35] in
IBM XL compilers. The DB model is a good choice for our
approach, since the model only focuses on optimizing for off-
chip data movement. Moreover, it focuses only on perfectly
nested loop, and conformable DNN operators are perfectly
nested loops as per the rule R1 in section 3.
3In case of non-software-managed scratchpad buffers, reducing data
movement between DRAM and L2 buffer is equivalent to finding a
level-3 tile whose memory footprint can fit into the L2 buffer and is
maximum.

The distinct blocks (DB) model starts with data-layouts of
multi-dimensional arrays and also the parametric tiled version
of a perfectly nested loop. Then, the model symbolically
estimates the off-chip data movement cost involved in a tile of
computation by measuring the number of the distinct number
of DRAM blocks required for all the references in the tile
of computation. Assuming the array I is laid out in the row-
major order, the distinct number of DRAM blocks (with block
size as B and tile sizes TX , TY) required for an example array
reference I[x+y][y] enclosed in a triply nested loop with
iterators x, y, z is computed as follows:

DBI(TX ,TY)≈

(⌈
TX +TY

b

⌉)
× (TY)×TZ

In the above formulation, the innermost access of the refer-
ence is divided by the block size4, because the data movement
with DRAM happens in multiples of block sizes. Now, the
total data movement cost (DMC), a.k.a. memory cost per
iteration, involved in a tile is computed as the number of dis-
tinct DRAM blocks required for all references in the tile by
the total number of iterations in the tile. The optimal level-3
tile sizes and data-layouts are computed by minimizing the
data movement cost function for every layout and tile sizes
in the off-chip mapping subspace with the two constraints,
i.e., 1) the tile size of a loop should be greater than 0 and
should not exceed its corresponding loop bound, and 2) the
total data required (including double buffering) for a level-3
computation tile should fit into the on-chip L2 buffer.

After computing the optimal level-3 tile sizes and data-
layouts of tensors, our approach computes the partial deriva-
tives (slopes) of the data movement cost function (based on
the optimal data-layout) with respect to parametric level-3
tile sizes (similar to [32]), and evaluate the partial derivatives
by substituting optimal level-3 tile sizes. The key insight
is that having a higher negative value of a partial derivative
along a loop indicates the lesser distinct number of elements
referenced along the loop, i.e., highest reuse along the loop,
and it is suggested to keep it in the innermost position to
exploit maximum temporal reuse. Similarly, the rest of the
loops are ordered based on their partial derivative values.

5.2 Solving on-chip mapping subspace
The on-chip mapping subspace is constructed based on

the optimal values of level-3 tile sizes. Then, our approach
explores the constructed subspace to find optimal mappings
for each of the three optimal goals, i.e., lower runtime (higher
throughput), lower energy consumption, and lower energy-
delay product. For each mapping of the constructed subspace,
our approach transforms the mapping into its equivalent MDC
notation (described in section 4). Then, our approach uses the
MDC’s cost model [21] to estimate various metrics such as
latency and energy of each mapping in the on-chip subspace.
The MDC’s cost model precisely computes performance and
energy, accounting for under-utilization, edge conditions, and
data reuse or movement across time (via L1/L2 buffers [7]),
space (via broadcast links [22]), and space-time (via neighbor-
ing links [8, 18]) without requiring explicit RTL/cycle-level

4Setting block size to one ignores the impact of data-layouts that
we consider in our approach (innermost dimension reordering [23]).

7

simulations or access to real hardware.

Algorithm 1: Our approach to explore on-chip mapping
subspace, including pruning strategies

1 for every level-2 inter-tile loop order do
2 for every level-2 tile size do
3 Hardware pruning: PE utilization bound
4 Hardware pruning: No prologues/epilogues
5 for every level-1 tile size do
6 Hardware pruning: Finite L1 size buffer
7 Hardware pruning: No prologue/epilogue
8 // Translate mapping into MDC form
9 Invoke the MDC’s cost model→ (runtime,

energy, and other metrics)

Algorithm 1 shows an overview of our approach in explor-
ing the on-chip mapping subspace along with pruning strate-
gies. We introduce a parameter called “PE utilization bound
(p)" to prune search space of level-2 tile sizes by bounding
the overall PE array utilization to be at-least the parameter p.
The above technique is beneficial in finding optimal on-chip
mappings with the optimization goal being throughput, be-
cause the highest throughput is typically obtained at higher
PE utilization rates [9]. Our approach also includes a pruning
strategy to choose level-1 and level-2 tile sizes such that they
don’t result in any prologues or epilogues, i.e., the tile sizes
are factors of loop bounds. All of the above-mentioned prun-
ing strategies can be enabled/disabled in Marvel by passing
them as input parameters.

6. EVALUATION
In this section, we begin with an overview of the experi-

mental setup used in our evaluation. Then, we present the
evaluation of mappings generated by Marvel for a wide vari-
ety of DNN operators (CONV2D, GEMM, MLP, and LSTM),
and discuss insights from the mappings while comparing
them with previous work.

Accelerator
platform (P1)

(Eyeriss-like [7])

Accelerator
platform (P2)

(Edge/IoT-like) [2]
#PEs 168 1024

Clock frequency 200 MHz 200 MHz
GigaOpsPerSec(GOPS) 67.2 409.6
NoC bandwidth (GB/s) 2.4 25.6

L1 buffer size 512B 512B
L2 buffer size 108KB 108KB

DRAM block size [17] 64 64

Table 2: Accelerator setups in our evaluation.

Target accelerators. Marvel is applicable to any spatial ac-
celerator since it abstracts accelerator details as #PEs, L1/L2
buffer sizes, NoC bandwidth, reduction/multicast support,
etc, which can be used to model a wide variety of acceler-
ators including Eyeriss [7], NVDLA [26], TPU [2], xDNN.
Due to space limitations, we present our evaluation for only
two accelerator platforms (shown in table 2): An acceler-
ator (Eyeriss-like [7]) having 168 PEs and 2.4GB/s NoC
bandwidth, and another accelerator having 1024 PEs and
25.6GB/s. We inherit L1, L2 buffer, and clock frequency for

both platforms from Eyeriss [7], i.e., 512B L1 buffer, 108KB
L2 buffer, and 200MHz clock frequency. The bidirectional
NoC used in our evaluation is a two-level hierarchical bus,
which has support for multicasting similar to Eyeriss.
Experimental variants. We have implemented few of
the exploration strategies of recent optimizers such as In-
terstellar [41] and dMazeRunner [12] in our framework. For,
instance, the Interstellar optimizer focuses on parallelizing
input and output channels of CONV2D operators, whereas
the dMazeRunner optimizer focuses on parallelizing only
output channels and a limited set of loop orders. We compare
Marvel generated mappings for each workload and acceler-
ator platform with three variants: 1) Marvel implemented
Interstellar-like [41] optimizer generated mappings, 2) Mar-
vel implemented dMazeRunner-like [12] optimizer generated
mappings, and 3) Roof-line peak based on the workload arith-
metic intensities and accelerator configurations.
Methodology. We have evaluated all the mappings gener-
ated by the experimental variants using the MAESTRO cost
model [21]. Moreover, the analytical cost model within the
MAESTRO framework is validated against the RTL imple-
mentations of Eyeriss [7] and MAERI [22] on VGG16 and
AlexNet models. We passed a pruning option to the Marvel to
choose tile sizes that divide loop bounds evenly without any
remainder, and this has been the consideration in the other
approaches [12, 24, 27, 41, 43]. We also set the minimum PE
array utilization bound as 0.1, i.e., at-least 10% of the PE
array should be mapped with computation. We apply 8-bit
fixed point precision for all the tensors used in our evaluation.

6.1 Evaluation on CONV2D
The CONV2D is a widely used DNN operator in con-

volution neural networks, and these operators account for
more than 90% of overall computation [7, 11], dominating
overall latency, and energy consumption in inferences. In
our evaluation, we considered popular CNN models, such
as AlexNet [20], VGG16 [36], ResNet50 [16], and Mo-
bileNetV2 [31], with a batch size of one as this captures the
low latency requirement use case and also represents a more
challenging setup for energy efficiency and throughput [9].
In addition, these models encompass a broad spectrum of
CONV2D operators such as regular, point-wise, depth-wise,
strided variants with different filter shapes.

R
un

tim
e

re
la

tiv
e

to
 th

e
 ro

ofl
in

e
pe

ak
 (L

ow
er

 is
 b

et
te

r)

0

2

4

6

8

AlexNet (P1) VGG-16 (P1) AlexNet (P2) VGG-16 (P2) Geo. Mean (P1) Geo. Mean (P2)

1.301.461.221.38
1.67

1.28

4.52

1.76

5.75

3.55

1.781.74
1.121.291.081.161.321.26

Marvel (our approach)
dMazeRunner-like optimizer
Interstellar-like optimizer

Figure 7: Performance comparison of Marvel generated
mappings with the mappings of dMazeRunner-like opti-
mizer [12] and Interstellar-like optimizer [41] relative to
the roof-line peaks of the AlexNet and VGG-16 models
on both the platforms (P1 and P2).

8

Figure 8: Runtime and energy comparison of Marvel generated mappings with the popular mapping styles such as
row-stationary (RS) from Eyeriss [7], weight-stationary from DLA [26], output-stationary from ShiDianNao [13] for
the AlexNet [20], VGG-16 [36], ResNet-50 [16], MobileNet-V2 [31] models on both the platforms (P1 and P2).

Comparison with the existing optimizers. Figure 7 presents
the runtimes of optimized mappings generated by Marvel,
dMazeRunner-like optimizer [12], and Interstellar-like opti-
mizer [41] relative to the roof-line peaks of the AlexNet and
VGG-16 models on both the platforms. Since each model in-
volves multiple CONV2D operations, we have added the run-
times of the each CONV2D operator to present our evaluation
at the level of DNN models. The Interstellar-like optimizer is
almost equivalent to the brute-force exploration except that it
restricts exploiting parallelism along only input and output
channels. As a result, the evaluation using the Interstellar-
like optimizer is really time-consuming (multiple days for
MobileNetV2 and ResNet50), and hence we restricted the
comparison to only AlexNet and VGG16 models. As can be
observed from the fig. 7, Marvel generated mappings are geo-
metrically 2.35× and 1.15× faster compared to the mappings
obtained by the dMazeRunner-like optimizer and Interstellar-
like optimizer, respectively. The dMazeRunner-like optimizer
focuses on exploiting parallelism along only output channels
(in presence of unit batch size) to avoid inter-PE communi-
cation, and this results in under-utilization of the PE array
for both models. But, the Interstellar-like optimizer is able
to perform close to Marvel, because the number of input
and output channels in these models are larger (except at the
initial layers). Furthermore, our approach is able to identify
mappings in seconds to few minutes for each operator on a
local machine, unlike the Interstellar-like optimizer which
takes almost 1-5 hours for each operator. We don’t compare
the search time with the dMazeRunner-like optimizer, be-
cause we haven’t implemented all the heuristic strategies, for,
e.g., exploring tiling factors that highly utilize (at-least 60 %)
the scratchpad buffers. Table 3 shows the impact of our de-
coupling and pruning strategies on the original search space
of mappings of the four models with an average reduction of
O(1010) in the mapping space.
Comparison with the popular mapping styles. Some of
the state-of-the-art mapping styles are row-stationary (RS)

Variants Search space size
Min Avg Max

Original search space 2.7×1017 9.4×1018 1.8×1019

Off-chip schedules search 7.3×108 3.6×1011 1.3×1012
space after decoupling
On-chip schedules search 2.9×107 2.4×1010 1.4×1011
space after decoupling
Off-chip schedules search 9.9×105 1.5×108 6.3×108
space after decoupling + pruning
On-chip schedules search 3.8×105 5.9×107 2.4×108
space after decoupling + pruning

Table 3: The statistics (min/avg/max) of the CONV2D
mapping space in our evaluation and the resultant map-
ping subspaces after decoupling and pruning strategies.

from Eyeriss [7], weight-stationary from DLA [26], and
output-stationary from ShiDianNao [13]. In our evalua-
tion, we encoded the above mapping styles in the form of
parallelization and loop order constraints on the on-chip
mapping space of our decoupled approach. For instance,
weight-stationary (DLA) mapping style includes paralleliza-
tion across input and output channels with the loop iterators
corresponding to the weight tensor in the innermost positions
of the loop orders. As can be observed from fig. 8, the run-
times of Marvel generated mappings for all the models are
only 1.31× and 1.10× higher relative to the roof-line peaks
of all the models on both accelerator platforms P1 and P2,
respectively.

The Eyeriss-like mappings [7] exploit parallelism along
output width and filter width dimensions, where as the ShiDianNao-
like mappings [13] exploit along output width and height.
But, the extents of these dimensions are relatively small
especially in modern DNN models such as ResNet50 and
MobileNetV2. Hence, these mappings are often resulted in
under-utilization of the PE array leading to higher runtimes
compared to the roof-line peak (e.g., 100.36× for Eyeriss-
like mappings on platform P2). But, these mappings exploit

9

Figure 9: Performance comparison of Marvel generated mappings with the mappings of dMazeRunner-like opti-
mizer [12], and Interstellar-like optimizer [41] relative to the roof-line peaks of the GEMM workloads in table 4 and
LSTM, MLP in table 5 on both the platforms (P1 and P2).

popular row-stationary and output-stationary behavior lead-
ing to lower energy consumption (e.g., 2.91× for Eyeriss-like
mappings on platform P2) relative to the Marvel reported
energy-efficient mappings.

The DLA-like mappings exploit parallelism along input
and output channels, and the extent of these dimensions are
sufficient enough to keep the PE array busy for most of the
layers of AlexNet, VGG16, and ResNet50 models. However,
the MobileNetV2 model has introduced depth-wise operators
which lacks parallelism in the input channels. This resulted
in less performance of the DLA-like mapping compared to
the roof-line peak, and our approach exploited alternate di-
mensions (more than one) for the parallelism. However, the
DLA-like mappings exploit weight-stationary reuse behavior,
and these DNN models have large number of weight parame-
ters compared to other tensors. This resulted in only 1.10×
higher energy consumption relative to the Marvel reported
energy-efficient mappings.

6.2 Evaluation on GEMM
In this evaluation, we have considered GEMM workloads

from the recent work in [29]. An interesting aspect of these
workloads is that they are irregular in their shapes making
the rigid accelerators (e.g., TPUs) hard to reach their peak
utilization [29]. A summary of these workloads are shown
in table 4, where M, N, K refers to number of rows, columns
of first matrix followed by the columns of second matrix.

We translated the GEMM workloads into their equivalent
CONV2D workloads for the Interstellar-like and dMazeRunner-
like optimizers, because their exploration strategies are spe-
cific to the CONV2D workloads (e.g., parallelization strate-
gies). Figure 9 presents the runtime of optimized mappings
generated by Marvel, dMazeRunner-like optimizer [12], and
Interstellar-like optimizer [41] relative to the roof-line peak
of each GEMM workload. The runtimes of Marvel gener-
ated mappings are only 1.24× and 1.10× higher relative
to the roof-line peaks of accelerator platforms P1 and P2

Workload Application Dimensions
M N K

GNMT Machine
Translation

128 2048 4096
320 3072 4096
1632 36548 1024
2048 4096 32

DeepBench General
Workload

1024 16 500000
35 8457 2560

Transformer Language
Understanding

31999 1024 84
84 1024 84

NCF Collaborative
Filtering

2048 1 128
256 256 2048

Table 4: Description of the GEMM workloads which are
taken from the recent work in [29].

respectively, thereby demonstrating the closeness of map-
pings obtained using our approach to the peak. Further-
more, we observed that maximum reuse (spatial, temporal,
spatio-temporal) is exploited only when all the dimensions
of the GEMM operator are parallelized. Hence, Marvel gen-
erated mappings included parallelization of the three dimen-
sions to make the PE array occupied along with exploiting
maximum reuse. This is in contrast to other approaches,
i.e., Interstellar-like optimizer focusing on parallelizing only
(N,K) dimensions and dMazeRunner-like optimizer focusing
on parallelizing only (K) dimension. As a result, Marvel
generated mappings are 6.87× and 1.81× faster compared to
the mappings obtained by the dMazeRunner-like optimizer
and Interstellar-like optimizer for all the GEMM workloads
on the both accelerator platforms.

6.3 Evaluation on MLP and LSTM
In this evaluation, we have considered the MLP and LSTM

workloads from the Interstellar work in [41], and a summary
of these workloads are shown in table 5.

We translated the MLP workloads into CONV2D work-
loads for the Interstellar-like and dMazeRunner-like optimiz-

10

Compiler/
Mapper

Target
architecture Target goal Accurate cost

models

Operators
supported/
evaluated

Level-1
Tiling Level-2 tiling Level-3 tiling

Approach
Tile sizes Parallel

loops
Degree of
parallelism

Inter-tile
order Tile sizes Inter-tile

order

mRNA MAERI Runtime,
Energy YES CONV2D NA YES YES YES NO NO Bruteforce

Zhang et al. Spatial Runtime NO CONV2D NA FIXED YES FIXED YES YES Bruteforce
Ma et al. Spatial Runtime NO CONV2D NA FIXED YES FIXED YES YES Bruteforce

Auto-TVM Spatial Runtime NO CNNs NA YES YES YES YES YES Annealing
dMaze
Runner Spatial Runtime,

Energy YES CONV2D YES FIXED YES FIXED YES FIXED Bruteforce

Interstellar Spatial Runtime,
Energy YES CONV2D,

LSTM, MLP YES FIXED YES YES YES YES Bruteforce

TimeLoop Spatial Runtime,
Energy YES DeepBench,

CNNs YES YES YES YES YES YES Brute-force,

random sampling

Marvel Spatial Runtime,
Energy YES Any MDC

Conformable YES YES YES YES YES YES Decoupled

Figure 10: Comparison of Marvel with prior approaches (mRNA [44], Zhang et al. [43], Ma et al. [24], Auto-TVM [5],
dMazeRunner [12], Interstellar [41], TimeLoop [27]) for the mapping space exploration of DNN operators. Our ap-
proach (Marvel) supports any operator conformable with the MDC notation.

Network Layer Input channels Output channels

MLP-M
FC1 784 1000
FC2 1000 500
FC3 500 250

MLP-L
FC1 784 1500
FC2 1500 1000
FC3 1000 500

Network Embedding size Batch size
LSTM-M 500 128
LSTM-L 1000 128

RHN 1500 128

Table 5: Description of the MLP and LSTM workloads
which are taken from the Interstellar work in [41].

ers. We also translated the LSTMs workloads into their equiv-
alent CONV2D workloads via first converting into GEMM
workloads. For instance, a LSTM workload with batch
size as B and embedding size5 as E can be translated into
a GEMM workload with M being the batch size (B), N be-
ing the embedding size (E), and K being the 2×E. Figure 9
presents the runtime of optimized mappings generated by
Marvel, dMazeRunner-like optimizer [12], and Interstellar-
like optimizer [41] relative to the roof-line peak of each
workload in table 5. Marvel generated mappings are 4.46×
and 1.22× faster compared to the mappings obtained by the
dMazeRunner-like optimizer and Interstellar-like optimizer
for all the workloads on the both accelerator platforms. The
benefits compared to dMazeRunner-like optimizer is higher
because of its parallelization across only a single dimension
(Embedding size in case of LSTM and Output channels in
case of MLP) and also exploring only limited loop orders for
reuse. In addition, Marvel is able to do better compared to
Interstellar-like optimizer by exploring more levels of paral-
lelism to make the PE array occupied (e.g., only 1.04× higher
relative to roof-line peak on platform P2).

5Embedding size is the size of input and hidden vectors.

7. RELATED WORK
In this section, we discuss prior work only on compil-

ers/mappers (shown in Figure 10) for finding efficient map-
pings of DNN operators on to the spatial accelerators. Prior
work [7, 44] focused on developing mappers specific to their
architectures, for, e.g., mRNA mapper [44] for the MAERI
accelerator [22], limiting their applicability to generic spatial
accelerators. Prior work such as Auto-TVM [5], Zhang et
al. [43], Ma et al. [24] focused on spatial accelerators without
L1 buffers inside a PE, again limiting their mapping space
formulation. Furthermore, they don’t employ accurate cost
models and focus only on optimizing for runtime.

In addition, other prior works such as Interstellar [41],
dMazeRunner [12] fixed certain aspects of mapping space
such as choice of parallel loops, loop orders, and these choices
may not reflect the efficient mappings for a wide variety of
DNN operators. To the best of our knowledge, TimeLoop [27]
is the only framework that considers all aspects of a mapping
for a fully flexible spatial accelerator. However, it employs ei-
ther an exhaustive linear search or a random sampling-based
heuristic to explore the search space. In contrast to all of
the above works, our approach considers all the aspects of
mapping space and uses the decoupled strategy to efficiency
navigate the mapping space.

Most of the prior work focus on optimizing convolution
operators, and its not clearer if their approaches are appli-
cable to any DNN operator expressed in the loop-nest form.
But, our approach is guaranteed to perform on any operator
conformable to the MDC notation.

8. CONCLUSION & FUTURE WORK
In this paper, we provide a formal understanding of DNN

operators whose mappings can be described in the MDC no-
tation by introducing a set of rules over the abstract loop nest
form of the operators. Furthermore, we introduce a trans-
formation for translating mappings into the MDC notation
for exploring the mapping space. Then, we also proposed
a decoupled off-chip/on-chip approach that decomposes the

11

mapping space into off-chip and on-chip subspaces, and first
optimizes the off-chip subspace followed by the on-chip sub-
space. We implemented our decoupled approach in a tool
called Marvel, and a major benefit of our approach is that it is
applicable to any DNN operator conformable with the MDC
notation. Our approach reduced the search space of CONV2D
operators from four major DNN models from 9.4×1018 to
1.5×108 +5.9×108 u 2.1×108, which is a reduction fac-
tor of ten billion (Table 3), while generating mappings that
demonstrate a geometric mean performance improvement of
10.25× higher throughput and 2.01× lower energy consump-
tion compared with three state-of-the-art mapping styles from
past work. In the future, we envision 1) Marvel integration
with the MLIR compiler infrastructure for wide usability, 2)
extending the MDC notation and its cost model to support
non-conformable operators, and also 3) using for a wide range
of applications, including the neuro-architecture search.

9. ADDITIONAL AUTHORS

REFERENCES
[1] “The future is here - iphone x (neural engine),” https:

//www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/,
2017.

[2] “Edge tpu: GoogleâĂŹs purpose-built asic designed to run inference
at the edge.” https://cloud.google.com/edge-tpu/, 2019.

[3] R. Allen and K. Kennedy, Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan Kaufmann,
2001.

[4] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An Automated End-to-end Optimizing Compiler for Deep Learning,”
in Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’18. Berkeley, CA, USA:
USENIX Association, 2018, pp. 579–594. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3291168.3291211

[6] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” in International conference on
Architectural support for programming languages and operating
systems (ASPLOS), 2014.

[7] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in
International Symposium on Computer Architecture (ISCA), 2016.

[8] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1,
pp. 127–138, 2017.

[9] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 2019.

[10] E. S. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. M.
Caulfield, T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman,
M. Abeydeera, L. Adams, H. Angepat, C. Boehn, D. Chiou,
O. Firestein, A. Forin, K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan,
A. E. Husseini, T. Juhász, K. Kagi, R. Kovvuri, S. Lanka, F. van
Megen, D. Mukhortov, P. Patel, B. Perez, A. Rapsang, S. K. Reinhardt,
B. Rouhani, A. Sapek, R. Seera, S. Shekar, B. Sridharan, G. Weisz,
L. Woods, P. Y. Xiao, D. Zhang, R. Zhao, and D. Burger, “Serving
DNNs in Real Time at Datacenter Scale with Project Brainwave,”
IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018. [Online]. Available:
https://doi.org/10.1109/MM.2018.022071131

[11] J. Cong and B. Xiao, “Minimizing computation in convolutional

neural networks,” in International conference on artificial neural
networks (ICANN). Springer, 2014, pp. 281–290.

[12] S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava,
“DMazeRunner: Executing Perfectly Nested Loops on Dataflow
Accelerators,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s, Oct.
2019. [Online]. Available: https://doi.org/10.1145/3358198

[13] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in International Symposium on Computer Architecture (ISCA),
2015.

[14] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning
hierarchical features for scene labeling,” PAMI, vol. 35, no. 8, pp.
1915–1929, 2013.

[15] J. Ferrante, V. Sarkar, and W. Thrash, “On estimating and enhancing
cache effectiveness,” in International Workshop on Languages and
Compilers for Parallel Computing. Springer, 1991, pp. 328–343.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[17] Jedec, “DDR4 SDRAM STANDARD,”
https://www.jedec.org/standards-documents/docs/jesd79-4a, 2017.

[18] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in International
Symposium on Computer Architecture (ISCA). IEEE, 2017, pp. 1–12.

[19] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[20] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in NIPS, 2012.

[21] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, “Understanding reuse, performance, and hardware cost of
dnn dataflow: A data-centric approach,” in Proceedings of the 52Nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: ACM, 2019, pp. 754–768.
[Online]. Available: http://doi.acm.org/10.1145/3352460.3358252

[22] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable
interconnects,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2018, pp. 461–475.

[23] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou, “Optimizing
memory efficiency for deep convolutional neural networks on GPUs,”
in SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2016, pp. 633–644.

[24] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation
and dataflow in fpga acceleration of deep convolutional neural
networks,” in International Symposium on Field-Programmable Gate
Arrays (FPGA). ACM, 2017, pp. 45–54.

[25] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space
exploration of FPGA-based deep convolutional neural networks,” in
2016 21st Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2016, pp. 575–580.

[26] NVIDIA, “NVIDIA Deep Learning Accelerator (NVDLA),”
https://nvldla.org, 2018.

[27] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
Systematic Approach to DNN Accelerator Evaluation,” 2019.

[28] A. Parashar et al., “Scnn: An accelerator for compressed-sparse
convolutional neural networks,” in International Symposium on
Computer Architecture (ISCA), 2017, pp. 27–40.

[29] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm
accelerator with flexible interconnects for dnn training.”

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet
large scale visual recognition challenge,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[31] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

12

https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://cloud.google.com/edge-tpu/
http://dl.acm.org/citation.cfm?id=3291168.3291211
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1145/3358198
https://www.jedec.org/standards-documents/docs/jesd79-4a
http://doi.acm.org/10.1145/3352460.3358252
https://nvldla.org

“Mobilenetv2: Inverted residuals and linear bottlenecks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 4510–4520.

[32] V. Sarkar, “Automatic Selection of High-order Transformations in the
IBM XL FORTRAN Compilers,” IBM J. Res. Dev., vol. 41, no. 3, pp.
233–264, May 1997. [Online]. Available:
http://dx.doi.org/10.1147/rd.413.0233

[33] V. Sarkar and N. Megiddo, “An Analytical Model for Loop Tiling and
Its Solution,” in Proceedings of the 2000 IEEE International
Symposium on Performance Analysis of Systems and Software, ser.
ISPASS ’00. Washington, DC, USA: IEEE Computer Society, 2000,
pp. 146–153. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1153923.1154542

[34] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural
models to fpgas,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016.

[35] J. Shirako, K. Sharma, N. Fauzia, L.-N. Pouchet, J. Ramanujam,
P. Sadayappan, and V. Sarkar, “Analytical Bounds for Optimal Tile
Size Selection,” in Proceedings of the 21st International Conference
on Compiler Construction, ser. CC’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 101–121. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28652-0_6

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in International Conference on
Learning Representations (ICLR), 2015.

[37] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” CoRR, vol. abs/1703.09039,
2017. [Online]. Available: http://arxiv.org/abs/1703.09039

[38] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via
deep neural networks,” in Conference on Computer Vision and Pattern

Recognition (CVPR), 2014.

[39] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[40] “Accelerating dnns with xilinx alveo accelerator cards,”
https://www.xilinx.com/support/documentation/white_papers/wp504-
accel-dnns.pdf.

[41] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using
HalideâĂŹs Scheduling Language to Analyze DNN Accelerators,” in
Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS âĂŹ20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 369âĂŞ383. [Online]. Available:
https://doi.org/10.1145/3373376.3378514

[42] X. Yang, J. Pu, B. B. Rister, N. Bhagdikar, S. Richardson,
S. Kvatinsky, J. Ragan-Kelley, A. Pedram, and M. Horowitz, “A
Systematic Approach to Blocking Convolutional Neural Networks,”
CoRR, vol. abs/1606.04209, 2016. [Online]. Available:
http://arxiv.org/abs/1606.04209

[43] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[44] Z. Zhao, H. Kwon, S. Kuhar, W. Sheng, Z. Mao, and T. Krishna,
“mRNA: Enabling Efficient Mapping Space Exploration on a
Reconfigurable Neural Accelerator,” in Proceedings of 2019 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2019.

13

http://dx.doi.org/10.1147/rd.413.0233
http://dl.acm.org/citation.cfm?id=1153923.1154542
http://dx.doi.org/10.1007/978-3-642-28652-0_6
http://arxiv.org/abs/1703.09039
https://doi.org/10.1145/3373376.3378514
http://arxiv.org/abs/1606.04209

	1 Introduction
	2 Background
	2.1 Spatial DNN Accelerators
	2.2 MDC Notation

	3 Conformable DNN Operators
	4 Transformation
	4.1 Data Mapping directives

	5 Mapping Space Exploration
	5.1 Solving off-chip mapping subspace
	5.2 Solving on-chip mapping subspace

	6 Evaluation
	6.1 Evaluation on CONV2D
	6.2 Evaluation on GEMM
	6.3 Evaluation on MLP and LSTM

	7 Related Work
	8 Conclusion & Future work
	9 Additional Authors

