
ADVANCING COMPILER OPTIMIZATIONS
FOR GENERAL-PURPOSE &

DOMAIN-SPECIFIC PARALLEL ARCHITECTURES

Prasanth Chatarasi
PhD Thesis Defense

Habanero Extreme Scale Software Research Group

School of Computer Science

Georgia Institute of Technology

July 27th, 2020

1

Disruption in Computer Hardware
• Transistor scaling is reaching its limits (7nm today)
• Leading to the end of Moore’s law

2

General-Purpose
Parallel Architectures

Domain-specific
Parallel Architectures

GPGPUsSIMD

Many-core CPUsMulti-core CPUs Spatial accelerators Specialized SIMD

Thread Migratory Quantum

These architectures are evolving rapidly!
Images are taken from public domain

Application domains that demand
high performance are also increasing

Scientific computing
applications Large scale graph processing

Machine learning (Deep Neural Networks)

Furthermore, these domains are rapidly evolving with new algorithms!
3

Ways to achieve high-performance
1) Ninja/Expert
programmers

— Achieve close to

 peak performance

— Hard to port to new

 hardware platforms

— Only a small fraction
of developers are Ninja
programmers

2) High-performance
libraries

— Easy to develop high

 performance applications

— Not portable across

 platforms

— Hard to support rapidly

 evolving applications

— Inhibits optimizations

 across library calls

3) Optimizing
 compilers

— Easy to develop high

 performance applications

— Portable across platforms

— Easily supports rapidly

 evolving applications

— Enables full-program

 optimizations

— Promising direction, but
 requires advancements! 4

Thesis statement

“Given the increasing demand for performance
across multiple application domains and the major
disruptions in future computer hardware as we
approach the end of Moore’s Law, our thesis is that
advances in compiler optimizations are critical for
enabling a wide range of applications to exploit
future advances in both general-purpose and
domain-specific parallel architectures.”

5

6

Domain-specific compiler for graph
analytics on thread migratory hardware

(MCHPC’18)

Thread migratory
(EMU)

3)

Specialized vector
units (AI Engine)

Domain-specific compiler for tensor
convolutions on 2D SIMD units

(Under submission)
5)

Flexible Spatial
accelerators

Data-centric compiler for DNN
operators on flexible spatial

accelerators (ArXiv’20)
4)

Advancing Compiler Optimizations for Domain-Specific Parallel Architectures

Unification of storage transformations
with loop transformations (LCPC’18)

Vector Units
(SIMD, SIMT)2)

Multi-core/Many-core
CPUs

Analysis and optimization of explicitly
parallel programs (PACT’15)1)

Advancing Compiler Optimizations for General-Purpose Parallel Architectures

Key Contributions

Analysis and Optimizations of
Explicitly-Parallel Programs

7

"Polyhedral Optimizations of Explicitly Parallel Program"
Prasanth Chatarasi, Jun Shirako, and Vivek Sarkar,  

In Proceedings of the 24th International Conference on Parallel Architecture and Compilation (PACT'15)  
(One of four papers selected for Best Paper session)

Explicit parallel software on the rise!
• Parallel programming of multi-cores, many-cores in CPUs,

GPUs have become mainstream
• E.g., OpenMP for CPUs, CUDA for GPUs

• Programmers explicitly specify parallelism in the program

8

Key Challenges:
1) How to extend foundations of optimizing compilers to

support explicit parallelism?

2) Can explicit-parallelism be used to refine conservative
(imprecise) dependences?

Background: Explicit Parallelism

9

• Parallel programs have partial execution order
• Described by Happens-before relations

• Loop-level parallelism (since OpenMP 1.0)
• Iterations of the loop can be run in parallel

• Task-level parallelism (since OpenMP 3.0 & 4.0)
• Synchronization b/w parents and children — “omp taskwait”

• Synchronization b/w siblings — “depend” clause

Removal of all parallel constructs results in a sequential program
that is a valid (albeit inefficient) implementation of the parallel
program semantics.

Background: Serial-Elision property

Original program Task dependence graph

of the program

Graph after removing

parallel constructs

Satisfies serial-elision property
10

Our Approach (PoPP)

11

PoPP — Polyhedral optimizations of Parallel Programs

(satisfying serial-elision property)

Step-1: Compute dependences based on the
sequential order (use serial-elision and ignore

parallel constructs)

12
Jacobi scientific benchmark from the KASTORS suite

Step-2: Compute happens-before relations using
parallel constructs (ignoring statement bodies)

13
Jacobi scientific benchmark from the KASTORS suite

Step-3: Intersect dependences (Best of both worlds)

14

Step-4: Pass refined dependences to
Polyhedral optimizers (PolyAST)

15

• Refined dependences enable a broad set of transformations
• i-loop is parallel, but invalid rectangular tiling

• Skewing transformation to enable rectangular tiling

’

’

Step-5: Generate code

16

• Invoke polyhedral code generators (PolyAST)
• Capable of scanning the complex iteration space

• Fine-grained (point-to-point) synchronization instead of barriers

’

’

Omitted tiling for brevity

Evaluation

17

•PoPP was implemented in ROSE source to source compiler framework
and evaluated on the following benchmarks.

•KASTORS — Task parallel benchmarks (3)
• Jacobi, Jacobi-blocked, Sparse LU

•RODINIA — Loop parallel benchmarks (8)
• Back propagation, CFD solver, Hotspot, Kmeans, LUD, Needleman–

Wunsch, particle filter, path finder

Variants

18

• Original OpenMP program
• Written by programmer/application developer

• Automatic optimization and parallelization of serial-elision
version of the OpenMP program
• Automatic optimizers (PolyAST)

• Optimized OpenMP program with our approach
• Our framework (PoPP) which extends PolyAST with the intersection

of happens- before and data dependence relations

Evaluation on IBM Power 8

19

Summary & Related Work
• Summary:
• Extended the foundations of optimizing compiler for analyzing parallel

programs and also advanced the dependence analysis.

• Broadened the range of applicable legal transformations

• Geometric mean performance improvements of 1.62X on Intel
westmere and 2.75X on IBM Power8

20

• Related work:
• Data-flow analysis of explicitly parallel programs [Yuki et al. PPoPP’13]

• Improved loop dependence analysis for GCC auto-vectorization
[Jenson et al. TACO’17]

• Enabled classical scalar optimizations for explicitly-parallel programs
using “serial-elision” property [TAPIR — Tao et al. PPoPP’17]

Unification of storage transformations
with loop transformations (LCPC’18)

Vector Units
(SIMD, SIMT)2)

Domain-specific compiler for graph
analytics on thread migratory hardware

(MCHPC’18)

Thread migratory
(EMU)

3)

Specialized vector
units (AI Engine)

Domain-specific compiler for tensor
convolutions on 2D SIMD units

(Under submission)
5)

Flexible Spatial
accelerators

Data-centric compiler for DNN
operators on flexible spatial

accelerators (ArXiv’20)
4)

Advancing Compiler Optimizations for Domain-Specific Parallel Architectures

Multi-core/Many-core
CPUs

Analysis and optimization of explicitly
parallel programs (PACT’15)1)

Advancing Compiler Optimizations for General-Purpose Parallel Architectures

Key Contributions

Marvel: A Data-Centric Compiler for
DNN Operators onto Flexible

Spatial Accelerators

22

"Marvel: A Data-centric Compiler for DNN Operators on Spatial Accelerators"
Prasanth Chatarasi, Hyoukjun Kwon, Natesh Raina, Saurabh Malik, Vaisakh Haridas, Angshuman Parashar,

Michael Pellauer, Tushar Krishna, and Vivek Sarkar,

(ArXiv’20)

Deep Learning (DNN Models)

23

— Regular CONV1D

— Regular CONV2D

— Depth-wise CONV2D

— Transposed CONV2D

— Regular CONV3D

— Strided variants

— GEMM (MatMul)

— LSTM (RNNs)

— Element-wise

— Pooling

— Fully Connected/MLP

— …..

Examples of DNN
Operators (Layers)

Parashar et al., ISPASS 2019

C

C

K

Weights

Inputs Partial Sums
R

S Y

X P = X – S
C

Q
 = Y –R

N K
N

Regular CONV2D over 4D Tensors

Involves billions of computations

Spatial Accelerators

24

Problem statement:
How to map for

low latency,
high energy efficiency?

— Regular CONV1D

— Regular CONV2D

— Depth-wise CONV2D

— Transposed CONV2D

— Regular CONV3D

— Strided variants

— GEMM (MatMul)

— LSTM (RNNs)

— Element-wise

— Pooling

— Fully Connected/MLP

— …..

DNN Operators

PE

Shared Buffer (L2 Scratch Pad)

Network-on-Chip (NoC)

L1 Scratch Pad

ALU (MAC Unit)

To/From DRAM

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

DRAM unit

Abstract overview

Mapping involves
1) Parallelization onto compute resources,
2) Tiling across memory resources, and
3) Exploitation of data reuse

3-level accelerator
E.g., TPU, Eyeriss, NVDLA

Challenges

25

1. Explosion of hardware choices in spatial accelerators
• Wide variety of hardware structures & data movement restrictions

2. Rapid emergence of new DNN operators and shapes/sizes
• Various forms of algorithmic properties (e.g., reuses)

3. Selection of optimized mapping from massive mapping
space and also good cost models
• E.g., On average, O(1018) mappings for CONV2D in MobileNetV2

"Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach"
Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna,  
In Proceedings of the 52nd IEEE/ACM International Symposium on Microarchitecture (MICRO'19)

DNN Layer Sizes

…

C

X

YS

R
C

K

HW Resources

Mapping (Dataflow)

• Size Requirement
• Access Count

(Energy)

Buffer Analysis

• BW Requirement
• NoC Activity Count

NoC Analysis

• Roofline Throughput
• Expected Runtime

Runtime Analysis

Data Reuse
Analysis

Abstract HW
Model

Communication
Analysis

Computation
Analysis

Mapping space for a 3-level accelerator

26

• Loop orders across tiles
• Inter-tile level-3 loop order

• Inter-tile level-2 loop order

• Data-layouts of tensors on DRAM

• Mapping is an unique 6D tuple in
the 6-dimensional search space

• Multi-level tiling for memory hierarchy and for parallelization
• Level-1 tiling for the L1 buffer

• Level-2 tiling for the PE array

• Level-3 tiling for the L2 buffer for(t3p=0; t3p < P; t3p += T3p)

 for(t3s=0; t3s < S; t3s += T3s)
 for(t2p=t3p; t2p < t2p+T3p; t2p+=T2p)
 for(t2s=t3s ; t2s < t2s+T3s; t2s+=T2s)
 parallel_for(t1p=t2p; t1p < t1p + T2p; t1p += T1p)
 parallel_for(t1s=t1s; t1s < t1s + T2s; t1s += T1s)
 for(t0p=t1p; t0p < t0p + T1p; t0p +=1)
 for(t0s=t1s; t0s < t0s + T1s; t0s +=1)
 Output[t0p] += Weight[t0s] * Input[t0p + t0s]

Level 3 Inter-tile loops

Level 2 Inter-tile loops

Lv3
tile

Lv2
tile

Lv1
tile

for(p=1; p < P; p++)
 for(s=1; s < S; s++)
 Output[p] += Weight[s] * Input[p+s]

(a) Plain 1D Convolution

(b) Tiled 1D Convolution

(c) Tiling Example
P

s

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4

T3p

T3s

T2p

T2s

PE0 PE3PE2PE1

S

P

T1p
T1s

5

O(1018) mappings on average for a single convolution layer in
ResNet50 and MobileNetV2 models on Eyeriss-like accelerator

Our Intuition
Observation: Off-chip data movement is 2-3 orders of magnitude

more expensive compared to on-chip data movement

27 Vivienne et al., Deep Learning Tutorial

Idea: Decouple the mapping space based on off-chip and on-chip
data movement, and prioritize optimizing for off-chip data

movement first?

PE

Shared Buffer (L2 Scratch Pad)

Network-on-Chip (NoC)

L1 Scratch Pad

ALU (MAC Unit)

To/From DRAM

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

DRAM unit

Accessing L2 buffer: ~6x

Accessing DRAM unit: ~200x

Accessing local L1 buffer: ~1x

Compute: 1x

Accessing non-local L1 buffer: ~2x

Data movement energy

Our approach (Marvel)

28

Sarkar et al.,

IBM Journal, 1997

Kwon et al.,

MICRO 2019

Distinct Blocks
(DB) Cost

Model

MAESTRO
Cost Model

Mapping
space (6-dimensional)

Decoupled
mapping space Cost models

Off-chip
Subspace

(3-dimensional)

On-chip
Subspace

(3-dimensional)

Step-1: Optimizing off-chip subspace
• Input: Workload and hardware configuration

• Output: Level-3 tile sizes & inter-tile order, and data-layouts

• Distinct Blocks Model (DB Model)
• Given a parametric loop-nest and layout of tensors, the model

measures distinct number of DRAM blocks for a computation tile

29 Sarkar et al., IBM Journal, 1997

T3i is the tile size for loop-i,
b is the DRAM block size

Step-2: Optimizing on-chip subspace

30

• Input: Level-3 tile sizes, Level-3 tile order, data-layouts

• Output: Level-2 tile sizes, Level-2 tile order, Level-1 tile sizes

• Iterate over each on-chip mapping, translate into MAESTRO
understandable format, and invoke MAESTRO cost model

Evaluation

31

• Four CNN models: VGG16, AlexNet, ResNet50, MobileNetV2
• Also, GEMM, MLP, and LSTM workloads (precision: 8bit)

• 2 representative DNN accelerators (for this talk, only P2)

• Comparison variants with our decoupled approach
• Existing optimizers: dMazeRunner, Interstellar

• Popular on-chip mappings for CONV2D:

• Row-stationary inspired from Eyeriss

• Weight-stationary inspired from NVDLA,

• Output-stationary inspired from ShiDianNao

Comparison with existing optimizers

32

R
un

tim
e

re
la

tiv
e

to

th
e

 ro
ofl

in
e

pe
ak

(L

ow
er

 is
 b

et
te

r)

0

2

4

6

8

AlexNet VGG-16 Geo. Mean

1.301.221.38

4.52

5.75

3.55

1.121.081.16

Marvel (our approach) dMazeRunner-like optimizer
Interstellar-like optimizer

• Evaluated other optimizers over AlexNet and VGG-16 only

• Extremely time consuming (> 2 days) in case of MobileNetV2 and ResNet50

• dMazeRunner-like — Exhaustive search with aggressive pruning

• Heavy emphasis over the batch size

• Interstellar-like optimizer — Parallelization across output & input channels

• Suffers for MobileNetV2 and UNet models

• Marvel — Decouples the mapping space & apply pruning strategies

• Reduce the search space on average from O(1018) to O(108)

Comparison with popular on-chip mappings

33

R
un

tim
e

re
la

tiv
e

to
 th

e
  

ro
ofl

in
e

pe
ak

 (L
O

G
 s

ca
le

)  
(L

ow
er

 is
 b

et
te

r)

1

10

100

1000

10000

AlexNet VGG16 ResNet50 MobileNetV2 Geo. Mean

25.3026.93
16.49

7.90

116.67

2.78

16.94

1.741.391.46

100.35
228.83

90.32
37.93

129.36

1.101.101.081.051.16

Marvel (Decoupled) Decoupled + Eyeriss-inspired
Decoupled + DLA-inspired Decoupled + ShiDianNao-inspired

• DLA-inspired mappings — Parallelization across output & input channels

• Good scheme except for MobileNetV2 (because of depth-wise CONV2D)

• ShiDianNao-inspired mappings — Parallelization across output width & height

• Good scheme for early CONV2D layers having higher resolution

• Marvel mappings — Exploits > 2 levels of parallelism, various reuse orders

• Almost close to roof-line peak (10% costlier)

Prior work on mappers

34

Our approach (Marvel) considers all aspects of a mapping and
generate efficient latency/energy optimal mappings for

flexible spatial accelerators quickly.

Compiler/
Mapper

Target
architecture Target goal Accurate cost

models

Operators
supported/
evaluated

Level-1
Tiling Level-2 tiling Level-3 tiling

Approach
Tile sizes Parallel

loops
Degree of
parallelism

Inter-tile
order Tile sizes Inter-tile

order

mRNA MAERI Runtime,
Energy YES CONV2D NA YES YES YES NO NO Bruteforce

TVM VTA Runtime NO CNNs NA YES YES YES YES YES Annealing
DEEP

MATRIX Systolic Runtime,
Energy YES CONV2D,

LSTM, MLP YES YES YES YES YES YES Bruteforce

Zhang et al. Flexible Runtime NO CONV2D NA FIXED YES FIXED YES YES Bruteforce
Ma et al. Flexible Runtime NO CONV2D NA FIXED YES FIXED YES YES Bruteforce
dMaze
Runner Flexible Runtime,

Energy YES CONV2D YES FIXED YES FIXED YES FIXED Bruteforce

Interstellar Flexible Runtime,
Energy YES CONV2D,

LSTM, MLP YES FIXED YES YES YES YES Bruteforce

TimeLoop Flexible Runtime,
Energy YES DeepBench,

CNNs YES YES YES YES YES YES Brute-force,

random sampling

Marvel Flexible Runtime,
Energy YES Any MDC

Conformable YES YES YES YES YES YES Decoupled

Summary

35

1. Rapid emergence of DNN operators and hardware
accelerators pose a lot of challenges to compilers
• Complex algorithmic reuse patterns and hardware reuse structures

• Humongous mapping space problem

2. Fine-grained reasoning required for mapping DNN operators
to hardware accelerators for effective utilization
• MAESTRO cost model

3. Effectively exploring mapping space
• Marvel — Proposed a decoupled off-chip/on-chip approach to

efficiently explore the massive search space of mappings

• Reduced the search space on an average by O(1010)

Unification of storage transformations
with loop transformations (LCPC’18)

Vector Units
(SIMD, SIMT)2)

Domain-specific compiler for graph
analytics on thread migratory hardware

(MCHPC’18)

Thread migratory
(EMU)

3)

Specialized vector
units (AI Engine)

Domain-specific compiler for tensor
convolutions on 2D SIMD units

(Under submission)
5)

Flexible Spatial
accelerators

Data-centric compiler for DNN
operators on flexible spatial

accelerators (ArXiv’20)
4)

Advancing Compiler Optimizations for Domain-Specific Parallel Architectures

Multi-core/Many-core
CPUs

Analysis and optimization of explicitly
parallel programs (PACT’15)1)

Advancing Compiler Optimizations for General-Purpose Parallel Architectures

Key Contributions

Vyasa: A High-performance
Vectorizing Compiler for Tensor

Convolutions onto Xilinx AI Engine

37

"Vyasa: A High-Performance Vectorizing Compiler for Tensor Convolutions on the Xilinx AI Engine"
Prasanth Chatarasi, Stephen Neuendorffer, Samuel Bayliss, Kees Vissers, and Vivek Sarkar  

(Under submission)

Key architectural features of AI Engine

38

1) 2D SIMD datapath for fixed point
• Reduction within a row/lane

• #Columns depend on operand precision

• 32-bit types: 8 rows x 1 col

• 16-bit types: 8 rows x 4 col (or)

 16 rows x 2 col

• 8-bit types: 16 rows x 8 col

….

….

….

…
.

L0

L1

L15

C0 C1

Shuffle (interconnect) network

Vector register file (256B)

Local memory (128KB)

…
.

…
.

…
.

C7

Fixed Point SIMD Unit

Abstract view of AI Engine

2) Shuffle Interconnection network
• Between SIMD and vector register file

• Supports arbitrary selection of elements

from a vector register

• Some constraints for 16-/8-bit types

• Selection parameters are provided via
vector intrinsics

Problem Statement & Challenges

39

Problem statement: How to implement high-performance
primitives for tensor convolutions on AI Engine?

• Programmers manually use vector intrinsics to program 2D
SIMD datapath and also explicitly specify shuffle network
parameters for the data selection

• Tensor convolutions vary drastically in sizes and types

• Manually written code may not be portable to a different
schedule or data-layout

• Daunting to manually explore the space of mappings

Our Compiler (Vyasa)

40

Vyasa: Generating
high-performance
code leveraging

unique capabilities

….

….

….

…
.

L0

L1

L15

C0 C1

Shuffle (interconnect) network

Vector register file (256B)

Local memory (128KB)

…
.

…
.

…
.

C7

Fixed Point SIMD Unit

— Regular CONV1D

— Regular CONV2D

— Depth-wise CONV2D

— Transposed CONV2D

— Regular CONV3D

— …..

High-level specification of
Tensor Convolutions

(e.g., Halide)
C

C

K

Weights

Inputs Partial Sums
R

S Y

X P = X – S
C

Q
 = Y –R

N K
N

Vyasa means “compiler” in the Sanskrit language,
and also refers to the sage who first compiled the Mahabharata.

Our high-level approach (Vyasa)

41

In this talk, I focus on Step-3 and Step-4
leveraging Shuffle Network and 2D SIMD datapath!

⊗

0

0 1815

W

I

Running Example — CONV1D

42

for(x=0; x < 16; x++)

 for(w=0; w < 4; w++)

 O[x] += I[x+w]*W[w];

A sample schedule: Unroll w-loop and Vectorize x-loop (VLEN: 16)

 O(0:15) += W(0) * I(0:15)
 O(0:15) += W(1) * I(1:16)
 O(0:15) += W(2) * I(2:17)
 O(0:15) += W(3) * I(3:18)

1 2 3

Input Weight Output=⊗
16419

Challenges

43

 V1 = VLOAD(I, 0:15);
 V2 = BROADCAST(W, 0);
 V3 = VMAC(V1, V2);

 V4 = VLOAD(I, 1:16);
 V5 = BROADCAST(W, 1);
 V3 = VMAC(V3, V4, V5);

 V6 = VLOAD(I, 2:17);
 V7 = BROADCAST(W, 2);
 V3 = VMAC(V3, V6, V7);

 V8 = VLOAD(I, 3:18);
 V9 = BROADCAST(W, 3);
 V3 = VMAC(V3, V8, V9);
 VSTORE(O, 0:15, V3);

No support for unaligned loads

 O(0:15) += W(0) * I(0:15)
 O(0:15) += W(1) * I(1:16)
 O(0:15) += W(2) * I(2:17)
 O(0:15) += W(3) * I(3:18)

No support for broadcast operations

V6 and V8 have 15 elements in common.
How to reuse them without loading again?

How to exploit multiple columns
of 2D vector substrate?

Exploiting Vector Register Reuse

44

• Build “temporal reuse graph” with nodes being vector loads

• Edge exists b/w nodes if there is at least one element in common

• Identify connected components

• AI Engine allows to create logical vector registers of length up to 1024 bits

• Assign each connected component (aligned) to a logical vector register

• Use shuffle interconnection network to select desired elements

 O(0:15) += W(0) * I(0:15)
 O(0:15) += W(1) * I(1:16)
 O(0:15) += W(2) * I(2:17)
 O(0:15) += W(3) * I(3:18)

Grouping 1D Vector Operations

45

 O(0:15) += W(0) * I(0:15)
 O(0:15) += W(1) * I(1:16)
 O(0:15) += W(2) * I(2:17)
 O(0:15) += W(3) * I(3:18)

All the 4 operations are performed with a single load of V1 and V2 (reusing maximum)

Our high-level approach (Vyasa)

46

Auto-tuner explores the space of
schedules related to loop and

data-layouts.

Loop transformations:
1. Choice of vectorization loop

2. Loop reordering

3. Loop unroll and jam

Data-layout choices:
1. Data permutation

2. Data tiling (blocking)

We assume that workload memory footprint fits into a AI Engine
local scratchpad memory (128KB)

Evaluation

47

• CONV2D workloads (only for this talk)
• CONV2D in Computer Vision (CV)

 HALIDE CODE: O(x, y) += W(r, s) * I(x+r, y+s);

• CONV2D in DNNs

HALIDE CODE: O(x, y, k, n) += W(r, s, c, k) * I(x+r, y+s, c, n);

• AI Engine setup

• Comparison variants
• Roofline peak

• 32-bit types: 8 MACs/cycle, 16-bit types: 32 MACs/cycle

• Expert-written and tuned kernels for Computer Vision

Comparison with expert-codes (CV)

48

• Expert-written codes are available only for 3x3 and 5x5 filters
• Available as part of the Xilinx’s AI Engine compiler infrastructure

• Evaluation is over an image tile of 256x16

• Auto-tuner was able to find better schedules

• Especially non-trivial unroll and jam factors

M
AC

s/
C

yc
le

0

10

20

30

40

3x3 (32-bit) 5x5 (32-bit) 3x3 (16-bit) 5x5 (16-bit) Geo. Mean (32-bit) Geo. Mean (16-bit)

32.00

8.00

32.0032.00

8.008.00

22.69

7.87

23.65
21.76

7.917.83

20.45

7.20

23.30

17.95

7.556.85

Expert-Written Our approach with auto-tuner AI Engine Peak

Different filter sizes in CV domain

49

• Even-sized filters (except 2x2), our approach achieved close to peak
• 87% for 16-bit and 95% for 32-bit

• Odd-sized filters, our approach padded each row with an additional column
• For 16-bit type, number of reductions should be multiple of two (2 columns)

M
AC

s/
C

yc
le

0

6

13

19

25

31

38

44

50

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 Geo. Mean

25.9227.0828.4526.49
29.33

26.2027.54
23.65

28.53

21.7621.59

7.677.267.227.637.607.917.887.917.857.837.62

Our approach with auto-tuner for 32-bit types (AI Engine Peak : 8 MACs/cycles)
Our approach with auto-tuner for 16-bit types (AI Engine Peak : 32 MACs/cycles)

CONV2D’s in DNN’s (Batch size : 1)

50

• Evaluation over an image tile of 128x2x16 (except for FC)

• REG-CONV2D (3x3, 5x5, 7x7)
• Vectorization along Output width and Reduction along Filter channels

• PW-CONV2D (1x1), SS-CONV2D (1x3, 3x1), FC-CONV2D (1x1)
• Vectorization along Output channels and Reduction along Filter channels

• DS-CONV2D (3x3) — Padded each row
• Vectorization along Output width and Reduction along Filter width

M
AC

s/
C

yc
le

0

5

10

15

20

25

30

35

40

REG-3x3 REG-5x5 REG-7x7 PW-1x1 SS-1x3 SS-3x1 DS-3x3 FC-1x1 Geo. Mean

22.53

15.77
19.69

22.3422.47
24.94

28.37
26.60

22.62

7.677.947.467.887.897.757.837.457.19

Our approach with auto-tuner for 32-bit types (AI Engine Peak: 8 MACs/cycles)
Our approach with auto-tuner for 16-bit types (AI Engine Peak: 32 MACs/cycles)

Non-trivial data-layout choices

51

• 16-bit REG-CONV2D (3x3)
• Vectorization along Output width and Reduction along Filter channels

• For the fused vector operation (W1xI1 + W2 x I2)

• Data for (I1, I2) should be in a single vector register for the operation

• I1(0) and I2(0) should be adjacent for shuffle network constraints

• (C/2)Y’X’(2) refers to first laying out an input block of two channels followed by
width, height, and remaining channels.

Summary and Related Work

52

• Related work
• 2D SIMD data paths and shuffle networks are unique

• AFWK, vector unit of PEPSC architecture is the only closely related work

• A greedy approach in their compiler to identify back to back dependent
operations to map to their hardware.

• Summary
• Manually writing vector code for high-performant tensor convolutions achieving

peak performance is extremely challenging!

• Domain-specific compilation can be the key!

• Proposed a convolution-specific IR for easier analysis and transformations

• Our approach (Vyasa) can work for any convolution variant regardless of its

variations and shapes/sizes.

• Achieved close to the peak performance for a variety of tensor convolutions

53

Advances in compiler optimizations
are critical for enabling a wide range of application domains to

better exploit current and future general-purpose and
domain-specific parallel architectures !!

Unification of storage transformations
with loop transformations (LCPC’18)

Vector Units
(SIMD, SIMT)2)

Domain-specific compiler for graph analytics
on thread migratory hardware (MCHPC’18)

Thread migratory
(EMU)

3)

Specialized vector
units (AI Engine)

Domain-specific compiler for tensor
convolutions on 2D SIMD units

(Under submission)
5)

Flexible Spatial
accelerators

Data-centric compiler for DNN
operators on flexible spatial

accelerators (ArXiv’20)
4)

Multi-core/Many-core
CPUs

Analysis and optimization of explicitly
parallel programs (PACT’15)1)

Publications related to key contributions
1. Prasanth Chatarasi, Stephen Neuendorffer, Samuel Bayliss, Kees A. Vissers,

Vivek Sarkar; “Vyasa: A High-Performance Vectorizing Compiler for Tensor
Convolutions on the Xilinx AI Engine”. (Under submission) (2020)

2. Prasanth Chatarasi, Hyoukjun Kwon, Natesh Raina, Saurabh Malik, Vaisakh
Haridas, Tushar Krishna, Vivek Sarkar; “Marvel: A Data-centric Compiler for DNN
Operators on Spatial Accelerators”. CoRR abs/2002.07752 (2020)

3. Prasanth Chatarasi, Vivek Sarkar “A Preliminary Study of Compiler
Transformations for Graph Applications on the Emu System”. MCHPC@SC 2018

4. Prasanth Chatarasi, Jun Shirako, Albert Cohen, Vivek Sarkar: “A Unified
Approach to Variable Renaming for Enhanced Vectorization”. LCPC 2018

5. Prasanth Chatarasi, Jun Shirako, Vivek Sarkar: “Polyhedral Optimizations of
Explicitly Parallel Programs”. PACT 2015

54

Publications related to other contributions

6. Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, Tushar Krishna: “Understanding Reuse, Performance, and
Hardware Cost of DNN Dataflow: A Data-Centric Approach”. MICRO 2019

7. Jeffrey S. Young, E. Jason Riedy, Thomas M. Conte, Vivek Sarkar, Prasanth
Chatarasi, Sriseshan Srikanth: “Experimental Insights from the Rogues Gallery”.
ICRC 2019

8. Prasanth Chatarasi, “Extending the Polyhedral Compilation Model for
Debugging and Optimization of SPMD-style Explicitly-Parallel Programs" [MS
Thesis 2017, Rice University]

9. Prasanth Chatarasi, Jun Shirako, Martin Kong, Vivek Sarkar: “An Extended
Polyhedral Model for SPMD Programs and Its Use in Static Data Race
Detection”. LCPC 2016

55

Acknowledgments

56

• Thesis committee members
• Dr. Vivek Sarkar (advisor), Dr. Jun Shirako (co-advisor)

• Dr. Tushar Krishna, Dr. Santosh Pande, and Dr. Richard Vuduc

• Collaborators
• Albert Cohen, Martin Kong, Tushar Krishna, Hyoukjun Kwon, John

Mellor-Crummey, Karthik Murthy, Angshuman Parashar, Micheal
Pellauer, Stephen Neuendorffer, Jun Shirako, Kees Vissers, and others

• Other mentors
• Kesav Nori, Uday Bondhugula, Milind Chabbi, Shams Imam, Deepak

Majeti, Rishi Surendran, and others

• Habanero & Synergy Research Group Members

• Friends, Staff, and Family

57

Advances in compiler optimizations
are critical for enabling a wide range of application domains to

better exploit current and future general-purpose and
domain-specific parallel architectures !!

Unification of storage transformations
with loop transformations (LCPC’18)

Vector Units
(SIMD, SIMT)2)

Domain-specific compiler for graph analytics
on thread migratory hardware (MCHPC’18)

Thread migratory
(EMU)

3)

Specialized vector
units (AI Engine)

Domain-specific compiler for tensor
convolutions on 2D SIMD units

(Under submission)
5)

Flexible Spatial
accelerators

Data-centric compiler for DNN
operators on flexible spatial

accelerators (ArXiv’20)
4)

Multi-core/Many-core
CPUs

Analysis and optimization of explicitly
parallel programs (PACT’15)1)

