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SUMMARY

Computer hardware is undergoing a major disruption as we approach the end of Moore’s
law, in the form of new advancements to general-purpose and domain-specific parallel ar-
chitectures. Contemporaneously, the demand for higher performance is broadening across
multiple application domains ranging from scientific computing applications to deep learn-
ing and graph analytics. These trends raise a plethora of challenges to the de-facto approach
to achieving higher performance, namely application development using high-performance
libraries. Some of the challenges include porting/adapting to multiple parallel architec-
tures, supporting rapidly advancing domains, and also inhibiting optimizations across li-
brary calls. Hence, there is a renewed focus on advancing optimizing compilers from
industry and academia to address the above trends, but doing so requires enabling com-
pilers to work effectively on a wide range of applications and also to exploit current and
future parallel architectures better. As summarized below, this thesis focuses on compiler
advancements for current and future hardware trends.

First, we observe that software with explicit parallelism for general-purpose multi-core
CPUs and GPUs is on the rise, but the foundation of current compiler frameworks is based
on optimizing sequential code. Our approach uses explicit parallelism specified by the pro-
grammer as logical parallelism to refine the conservative dependence analysis inherent in
compilers (arising from the presence of program constructs such as pointer aliasing, un-
known function calls, non-affine subscript expressions, recursion, and unstructured control
flow). This approach makes it possible to combine user-specified parallelism and compiler-
generated parallelism in a new unified polyhedral compilation framework (PoPP).

Second, despite the fact that compiler technologies for automatic vectorization for
general-purpose vector processing (SIMD) units have been under development for over
four decades, there are still considerable gaps in the capabilities of modern compilers to
perform automatic vectorization. One such gap can be found in the handling of loops with
dependence cycles that involve memory-based anti (write-after-read) and output (write-
after-write) dependences. A significant limitation in past work is the lack of a unified
formulation that synergistically integrates multiple storage transformations to break the cy-
cles and further unify the formulation with loop transformations to enable vectorization.
To address this limitation, we propose the PolySIMD approach.

Third, the efficiency of domain-specific spatial accelerators for Deep Learning (DL) so-
lutions depends heavily on the compiler’s ability to generate optimized mappings or code
for various DL operators (building blocks of DL models, e.g., CONV2D, GEMM) on the
accelerator’s compute and memory resources. However, the rapid emergence of new op-
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erators and new accelerators pose two key challenges/requirements to the existing compil-
ers: 1) Ability to perform fine-grained reasoning of various algorithmic aspects of the new
operators and also complex hardware structures of the new accelerators to achieve peak
performance, and 2) Ability to quickly explore the enormous space of possible mappings
involving various partitioning schemes, loop transformations, and data-layout choices, yet
achieving high-performance and energy efficiency. To address these challenges, we intro-
duced a data-centric compiler “Marvel” for optimizing DL operators onto flexible spatial
accelerators. We also introduced a high-performance vectorizing compiler “Vyasa” for
optimizing tensors convolutions on specialized SIMD units of Xilinx AI Engine.

Finally, with the emergence of a domain-specific thread migratory architecture (EMU)
to address the locality wall, we developed thread-migration aware compiler optimizations
to enhance the performance of graph analytics on the EMU machine. Our preliminary
evaluation of compiler optimizations such as node fusion and edge flipping demonstrate a
significant benefit relative to the original programs.
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CHAPTER 1
INTRODUCTION

Traditionally, computational science and engineering (CSE) applications such as large-
scale climate prediction, computational fluid dynamics, high-dimensional tensor contrac-
tions, have dominated the need for performance to advance research in science and engi-
neering. However, the demand for high performance is broadening across multiple appli-
cation domains with the advent of big data and machine learning in the current era. For
example, large-scale graph processing has become an essential application domain for high
performance because of the prevalence of large graph data size from social networks [1,
2]. In the last few years, Deep Learning (DL) became a promising solution to many of the
learning tasks such as real-time speech recognition, computer vision, health intelligence,
self-driving cars [3, 4, 5]. These DL solutions also require higher performance because of
their longer training time and also tight latency constraints in the inference.

Parallel computer architectures refer to a class of computer processors with multiple
compute units connected via interconnection networks and a memory hierarchy. Some of
the popular parallel computer architectures are multi-core CPUs, SIMD units, and GPUs.
Figure 1.1 presents a quick forty-year overview of the processor performance, and we
briefly describe the parallel architecture evolution from 2004.

Figure 1.1: 40 years of process performance (taken from [6, 7]).

Parallel architectures evolution from 2004: The inability to increase single CPU clock
frequency within a power budget because of the breakdown of Dennard’s scaling (power
wall [8]) has resulted in the emergence of multi-core processors, and enabled Moore’s law

1



(doubling transistor count per every two years) [9] to extend further. Each of these cores
employs either simultaneous multi-threading (SMT) [10] or fine-grained multi-threading [11]
to provide thread-level parallelism. Also, vector processing units, i.e., Single Instruction
Multiple Data (SIMD) units, are integrated with the individual CPU cores to provide data-
parallelism.

The multi-core solution was a partial response to address the end of Dennard’s scaling,
and the solution quickly resulted in the utilization wall1, i.e., the percentage of a multi-core
chip that can actively switch drops exponentially due to power constraints. As a result,
multiple approaches have emerged to address the utilization wall. Some of the notable
approaches are: 1) Light-weight and simpler general-purpose cores (e.g., Intel KNL, GPG-
PUs), 2) Domain-specific accelerators tailored to optimizing a set of specific computations
(e.g., DNN accelerators, specialized SIMD units), and 3) Heterogeneous processors incor-
porating both light-weight general-purpose cores and domain-specific accelerators (e.g.,
Xilinx Versal [7]).

Unlike processor architectures, recently, applications have started posing walls to achieve
higher performance on the existing parallel architectures, for example, locality wall [14]
with the rise of memory-intensive applications (e.g., large scale graph analytics), where
computation is dominated by data access, movement, and little reuse during the computa-
tion. To address the locality wall, multiple approaches have started emerging, and some of
the noted approaches are: 1) Migratory thread-based architecture (e.g., EMU [15]) with
near-memories, 2) 3D stacked near-memory systems (e.g., HMC Micron [16]), and 3) Cus-

tom accelerators for domain-specific memory-intensive applications (e.g., ExTensor [17]
for sparse linear algebra).

General-Purpose and Domain-Specific Parallel Architectures: Since we are reaching
the end of Moore’s law, significant disruption is underway in computer hardware as pro-
cessors strive to extend, and go beyond, the end-game of Moore’s Law. The Industry and
Academia are pushing the boundaries of maximum peak performance and energy efficiency
of parallel hardware by 1) making the general-purpose processors lightweight and increas-
ing its count on a chip, and 2) building custom domain-specific accelerators to accelerate
specific sets of computations.

Majorly, there are three approaches to achieving the higher performance of applications
on parallel architectures – 1) Ninja (expert) programmers, 2) High-performance libraries,
and 3) Optimizing compilers. Ninja programmers have an in-depth knowledge of architec-

1The utilization wall is also referred to as dark silicon [12, 13] in the literature.
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ture, including various hardware intricacies, and optimize a given application very well on
that particular architecture. However, this approach requires a significant investment effort
to port it to other architectures, and this becomes even more daunting with the proliferation
of more architectures as we approach towards the end of Moore’s law.

Library-based approach, the de-facto approach, lets a programmer/developer compose
an application using high-performance library primitives, which are generally provided
by the hardware vendors (e.g., Intel MKL) and tuned for their particular architectures.
However, this approach can yield sub-optimal performance of the entire application, be-
cause these library calls are black boxes to programmers/compilers to perform optimiza-
tions across library calls. Also, with applications rapidly evolving (e.g., DNN models and
their operators) and their input sizes varying drastically (e.g., DNN layer sizes), it is tough
for the hardware vendors to cope with such a rapid change and provide a library that can
provide high-performance across all the inputs (e.g., Intel MKL DGEMM kernel can yield
lower performance on skewed matrix shapes).

Optimizing compilers is another approach to achieve performance across a variety of
parallel architectures and includes optimizations to maximize parallelism and memory lo-
cality using loop dependence analysis and transformations [18, 19, 20, 21, 22, 23, 24]. Us-
ing this approach, programmers/application developers can become less concerned about
intricacies of the performance optimizations and underlying architecture details, unlike
Ninja programmers. Since the optimizing compilers generally have back-ends for multiple
target architectures (e.g., LLVM), the portability issues to other architectures can be alle-
viated using this approach. Also, optimizing compilers can customize their optimization
techniques based on application input sizes, and also help in optimizing the rapidly evolv-
ing applications/kernels (e.g., DNN models and their operators), unlike the library-based
approaches [25]. Even though there are numerous benefits of using the optimizing compil-
ers relative to Ninja programmers and library-based approaches, optimizing compilers still
require advancements in program analysis, code transformations, and code generation to
exploit better the advancements in both the general-purpose and domain-specific parallel
architectures as part of the hardware disruption.
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1.1 Thesis Statement

”Given the increasing demand for performance across multiple application domains and

the major disruptions in future computer hardware as we approach the end of Moore’s Law,

our thesis is that advances in compiler optimizations, via newer analyses, transformations,

mapping space exploration strategies, and code generation techniques, are critical for en-

abling a wide range of applications to exploit future advances in both general-purpose and

domain-specific parallel architectures.”

1.2 Contributions

In this section, we outline our contributions in advancing compiler optimizations via newer
analyses, transformations, mapping space exploration strategies, and code generation tech-
niques to achieve higher performance on general-purpose and domain-specific parallel ar-
chitectures.

1) Polyhedral optimizations of explicitly-parallel programs for general-purpose multi-
core processors: Most of the compiler frameworks treat explicit-parallelism of an input
program either as unknown library calls or ignore them and perform dependence analysis to
enable optimizations. Additionally, the compilers perform conservative dependence analy-
sis in the presence of unanalyzable constructs such as pointer aliasing, unknown function
calls, non-affine expressions, recursion, and unstructured control flow. These unanalyzable
constructs can limit the applicability of transformations even though they are legal to apply.
Our work is motivated by the observation that software with explicit parallelism is on the
rise. Our approach uses the explicit parallelism specified by the programmer as a logical
parallelism. Then, our approach refines the conservative dependences with partial execu-
tion order from the explicit parallelism to enable a broader set of loop transformations,
compared to what might have been possible if the input program is sequential.

A summary of our approach (PoPP – Polyhedral optimizer for Parallel Programs) [26,
27] is as follows. We first enable conservative dependence analysis of a given region of
code by introducing dummy variables that can work with any polyhedral tool that supports
access functions. After obtaining conservative dependences, the Fourier-Motzkin elimi-
nation method is used to remove all dummy variables. Next, we identify happens-before
relations from the explicitly parallel constructs, notably parallel loops and tasks, and in-
tersect with conservative dependences. The resulting set of dependences is then passed
on to a polyhedral optimization tool, such as PolyAST, to enable the transformation of
explicitly-parallel programs with unanalyzable data accesses.
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We evaluate our approach using twelve OpenMP benchmark programs from the KAS-
TORS and Rodinia benchmark suites. We show that 1) these benchmarks contain unan-
alyzable data accesses that prevent polyhedral frameworks from performing exact depen-
dence analysis, 2) explicit parallelism can help mitigate the imprecision, and 3) polyhe-
dral transformations with the resulting dependences can further improve the performance
of manually-parallelized OpenMP programs. Our experimental results show performance
improvements for these OpenMP programs on a 12-core Intel Westmere platform and a
24-core IBM Power8 platform.

2) Unification of multiple storage transformations with loop optimizations for en-
hanced vectorization on general-purpose vector processors (SIMD/GPUs): Despite
the fact that compiler technologies for automatic vectorization have been under develop-
ment for over four decades, there are still considerable gaps in the capabilities of modern
compilers to perform automatic vectorization for SIMD units. One such gap can be found
in the handling of loops with dependence cycles that involve memory-based anti (write-
after-read) and output (write-after-write) dependences. Past approaches, such as variable
renaming and variable expansion, break such dependence cycles by either eliminating or
repositioning the problematic memory-based dependences. However, the past work suffers
from three key limitations: 1) Lack of a unified framework that synergistically integrates
multiple storage transformations, 2) Lack of support for bounding the additional space re-
quired to break memory-based dependences, and 3) Lack of support for integrating these
storage transformations with other code transformations (e.g., statement reordering) to en-
able vectorization.

We address the three limitations above by integrating both Source Variable Renaming
(SoVR) and Sink Variable Renaming (SiVR) transformations into a unified formulation,
and by formalizing the “cycle-breaking” problem as a minimum weighted set cover opti-
mization problem. To the best of our knowledge, our work (PolySIMD) [28] is the first to
formalize an optimal solution (reflecting best execution time) for cycle breaking that simul-
taneously considers both SoVR and SiVR transformations, thereby enhancing vectorization
and reducing storage expansion relative to performing the transformations independently.

We implemented our approach in PPCG, a state-of-the-art optimization framework for
loop transformations, and evaluated it on eleven kernels from the TSVC benchmark suite.
Our experimental results show a geometric mean performance improvement of 4.61× on an
Intel Xeon Phi (KNL) machine relative to the optimized performance obtained by Intel’s
ICC v17.0 product compiler. Further, our results demonstrate a geometric mean perfor-
mance improvement of 1.08× and 1.14× on the Intel Xeon Phi (KNL) and Nvidia Tesla
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V100 (Volta) platforms relative to past work that only performs the SiVR transforma-
tion [29], and of 1.57× and 1.22× on both platforms relative to past work on using both
SiVR and SoVR transformations [30].

3) Data-centric compiler for deep learning operators onto domain-specific DNN spa-
tial accelerators: The efficiency of a spatial DNN accelerator depends heavily on the
compiler and its cost model ability to generate optimized mappings for various operators of
DNN models on the accelerator’s compute and memory resources. A significant difference
between the compilers for spatial accelerators and CPUs/GPUs is the need for “accurate”
cost models for finding optimal mappings reflecting best latency and energy efficiency.
This is because spatial accelerator’s performance is sensitive to the mapping parameters,
for, e.g., a small change in the tile size or degree of parallelism would drastically change
the latency or energy efficiency numbers. However, existing cost models lack a formal
boundary over the operators for precise and tractable analysis, which poses adaptability
challenges for new DNN operators. To address this challenge, we leverage the recently
introduced Maestro Data-Centric (MDC) notation. We develop a formal understanding of
DNN operators whose mappings can be described in the MDC notation because any map-
ping adhering to the notation is always analyzable by the MDC’s cost model. Furthermore,
we introduce a transformation for translating mappings into the MDC notation for explor-
ing the mapping space.

Searching for the optimal mappings reflecting best latency and energy efficiency is
challenging because of the large space of mappings, and this challenge gets exacerbated
with new operators and diverse accelerator configurations. To address this challenge, we
propose a decoupled off-chip/on-chip approach that decomposes the mapping space into
off-chip and on-chip subspaces, and first optimizes the off-chip subspace followed by the
on-chip subspace. The motivation for this decomposition is to dramatically reduce the size
of the search space and prioritize the optimization of off-chip data movement, which is 2-3
orders of magnitude more than the on-chip data movement. We implemented our approach
in a tool called Marvel, and another significant benefit of our approach is that it applies to
any DNN operator conformable with the MDC notation. In addition, our approach works
by leveraging two state-of-the-art cost models to explore the two subspaces – a classical
distinct-block (DB) locality cost model for the off-chip subspace, and a state-of-the-art
DNN accelerator behavioral cost model, MAESTRO, for the on-chip subspace.

Overall, our approach reduced the mapping space by an O(1010) factor for the four ma-
jor CNN models (AlexNet, VGG16, ResNet50, MobileNetV2), while generating mappings
that demonstrate a geometric mean performance improvement of 10.25× higher throughput

6



and 2.01× lower energy consumption compared with three state-of-the-art mapping styles
from past work. We also evaluated our approach over the GEMM, LSTM, and MLP work-
loads and compared them with the optimizers from past work.

4) High-performance vectorizing compiler for tensor convolutions on the Xilinx AI
Engine (domain-specific 2D SIMD processor): There is a strong resurgence of interest in
improving vector processing (SIMD) units due to the significant energy efficiency benefits
of using SIMD parallelism. There is an emphasis on specializing SIMD units to improve
further energy efficiency benefits for specific domains such as Machine learning, Computer
Vision, and 5G Wireless. An important specialization, which is referred to as ”2D vector
SIMD datapath” [31, 32, 33], is the ability of each vector lane to execute more than one
scalar operation and to chain the results from one operation to another. Another specializa-
tion includes the removal of expensive data permutation units (e.g., shuffle units) [34, 35]
and instead introduce sophisticated, programmable interconnection networks (a.k.a shuffle
networks) between the SIMD datapath and vector register file to support the required data
permutation patterns [36, 33]. Xilinx’s AI Engine is a recent industry example of energy-
efficient vector processing that includes novel support for 2D SIMD datapaths and shuffle
interconnection network. The current approach to programming the AI Engine relies on
a C/C++ API for vector intrinsics. While an advance over assembly-level programming,
it requires the programmer to specify a number of low-level operations based on detailed
knowledge of the hardware.

To address these challenges, we introduce Vyasa, a new programming system that ex-
tends the Halide DSL compiler to generate code for the AI Engine automatically. We eval-
uated Vyasa on 36 CONV2D and 6 CONV3D workloads and achieved geometric means of
7.6 and 23.3 MACs/cycle for 32-bit and 16-bit operands (which represent 95.9% and 72.8%
of the peak performance respectively). For 4 of these workloads for which expert-written
codes were available to us, Vyasa demonstrated a geometric mean performance improve-
ment of 1.10× with 50× smaller code relative to the expert-written codes. Further, our
compiler-generated code achieved a geometric mean performance improvement of 1.134×
relative to expert-written codes available for two workloads.

5) Thread-migration aware compiler optimizations for graph analytics on thread-
migratory domain-specific hardware (EMU): Unlike dense linear algebra applications,
graph applications typically suffer from poor performance because of 1) inefficient utiliza-
tion of memory systems through random memory accesses to graph data, and 2) overhead
of executing atomic operations. Hence, there is a rapid growth in improving software and
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hardware platforms to address the above challenges. One such improvement in the hard-
ware is a realization of the Emu system, a thread migratory and near-memory processor
introduced to address applications domains having weak-locality. In the Emu system, a
thread responsible for computation on a datum is automatically migrated over to a node
where the data resides without any intervention from the programmer. The idea of thread
migrations is very well suited to graph applications as memory accesses of the applica-
tions are irregular. However, thread migrations can hurt graph applications’ performance if
overhead from the migrations dominates the benefits achieved through migrations.

In this preliminary study [37], we explore two high-level compiler optimizations, i.e.,
loop fusion and edge flipping, and one low-level compiler transformation leveraging hard-
ware support for remote atomic updates to address overheads arising from thread migration,
creation, synchronization, and atomic operations. We performed a preliminary evaluation
of these compiler transformations by manually applying them on three graph applications
over a set of RMAT graphs from Graph500 – Conductance, Bellman-Ford’s algorithm for
the single-source shortest path problem, and Triangle Counting. Our evaluation targeted
a single node of the Emu hardware prototype and has shown an overall geometric mean
reduction of 22.08% in thread migrations.

1.3 Organization

The rest of the dissertation is organized as follows.

• Chapter 2 briefly describes high-performance applications and also both general-
purpose and domain-specific parallel architectures considered in our thesis.

• Chapter 3 describes our work (PoPP) on using explicit parallelism to refine conserva-
tive dependence analysis and to enable a broader set of transformations for enhanced
parallelization on general-purpose multi-core CPUs.

• Chapter 4 describes our work (PolySIMD) on synergistically integrating multiple
storage transformations to break cycles in dependence graphs, and further unifica-
tion with loop transformations to enable vectorization on general-purpose vector
(SIMD/GPUs) processors.

• Chapter 5 describes our work (Marvel) introducing data-centric compiler for map-
ping computationally expensive deep learning primitives onto the domain-specific
DNN spatial accelerators.
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• Chapter 6 describes our work (Vyasa) introducing a domain-specific compiler to
automate the generation of high-performance vector code for tensor convolutions,
while exploiting the unique capabilities of the Xilinx AI Engine (domain-specific 2D
SIMD processor) without requiring manual effort in development and tuning.

• Chapter 7 describes our preliminary evaluation of thread-migration aware compiler
optimizations for graph algorithms on the thread-migratory (EMU) system intro-
duced for accelerating weak-locality application domains.

• Finally, Chapter 8 present our conclusions and directions for future research.
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CHAPTER 2
BACKGROUND

In this chapter, we provide a brief overview of the high-performance applications and also
both general- purpose and domain-specific parallel architectures in the dissertation.

2.1 Parallel Architectures

Parallel computer architectures refer to a class of computer processors with multiple com-
pute units connected via interconnection networks and a memory hierarchy. Some of the
popular parallel computer architectures are multi-core CPUs and GPUs. As we are reach-
ing the end of Moore’s law, computer architects are pushing the boundaries of maximum
peak performance and energy efficiency of parallel hardware by 1) making the general-
purpose processors light-weight and increasing the count of the processors on a chip, and
2) building custom domain-specific accelerators to accelerate specific sets of computations.
In this section, we provide a brief overview of both general-purpose and domain-specific
parallel architectures that are considered in this dissertation.

2.1.1 General-Purpose Parallel Architectures

General-purpose parallel architectures are programmable devices having multiple compute
units that can be used in a variety of applications, not limited to a specific application/do-
main. These architectures/processors have generic datapaths with large register files and
general functional units. Also, these processors are designed to be reasonably good at per-
formance nearly for any application. These processors often involve multiple levels of the
memory hierarchy (including caches) to make memory access faster.

Multi-Core Architectures

With the challenges from the lack of more abundant instruction-level parallelism (ILP)
in the applications and the breakdown of Dennard’s scaling (power wall), a significant
trend in the development of processors was more than one processing core on a single
integrated circuit. These processors are called as multi-core processors or chip multi-
processors. Each of these cores can employ either simultaneous multi-threading (SMT)
to effectively use the core resources from instructions of multiple threads, or fine-grained/

temporal multi-threading where only one thread of instructions can execute at a time and
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Figure 2.1: An abstract overview of a general-purpose multi-core processor having multiple CPUs
with a memory hierarchy (figure source: [38]).

share the resources in a round-robin fashion. The multi-core processors typically have mul-
tiple memory hierarchy levels to address memory wall problem and make memory accesses
faster. For example, each of the cores in a processor typically has a private L1 cache for
both instructions and data, a distributed L2 cache shared by multiple cores, and a single
larger L3 cache shared by all cores. The processor may also implement different cache
coherence protocols such as bus-based or directory-based protocols to maintain coherency
of data present at multiple locations in the cache hierarchy. Furthermore, multiple of these
cores or multi-core processors can be grouped into a socket and distribute its main memory
(DRAM) across the sockets, making the processors non-uniform (NUMA machines), e.g.,
IBM Power 9 machine.

The multi-core solution was a partial response to address the end of Dennard’s scaling.
The solution quickly resulted in the utilization wall, i.e., the percentage of a multi-core chip
that can actively switch drops exponentially due to power constraints, which is referred to
as dark silicon or Utilization wall [12, 13]. To address the utilization wall, the general-
purpose cores are becoming light-weight and more straightforward, for, e.g., removing
energy-expensive branch prediction units, changing from out-of-order execution to in-order
execution. Also, these processors have an increasing number of cores, and for instance,
Intel KNL processor has close to 60 cores. GPGPU architectures also belong to this class
of many-core processors, with each core being light-weight and more straightforward.

Programming: Traditionally, there have been two different approaches in program-
ming multi-core architectures: the automatic parallelization and the explicitly-parallel pro-
gramming approach. In the automatic parallelization approach, the programmer provides
a portion of a sequential program or a high-level specification of a computation. Then,
the compiler identifies parallelism available in the program and generates parallel codes
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for a broad range of architectures. The alternate approach is to write explicitly-parallel
programs, in which the programmer specifies the logical parallelism and explicit synchro-
nizations in the source program, and the compiler extracts the parallelism subset that is best
suited for a given target platform. In this approach, the programmer takes care of providing
the parallelism required for performance, and then the compiler takes care of generating
low-level code for the architecture.

Vector Processing (SIMD) Architectures

Figure 2.2: An abstract overview of a general-purpose SIMD architecture (figure source: [39]).

Single Instruction Multiple Data (SIMD) architectures are a class of parallel archi-
tectures introduced for vector supercomputers to exploit data-level parallelism for higher
performance with better energy efficiency. In SIMD architectures, multiple processing el-
ements perform the same operation on multiple data elements simultaneously. Also, these
SIMD architectures can only be used by a single thread of instructions at any point in time,
unlike multi-core processors that can simultaneously run multiple threads of instruction
streams. However, modern multi-core processors often include multiple SIMD architec-
tures (for, e.g., two SIMD units per single core in Intel KNL) in each core to improve
the performance of data-parallel applications such as multimedia and machine learning.
GPGPU architectures can also be viewed as a group of vector processing units since all
threads in a GPU block execute in a SIMD fashion.

Programming: In general, application programmers rely on automatic vectorizing com-
pilers to generate vector code automatically from a high-level programming language or
annotations, because it is a very time-consuming task to deal with vector intrinsics, mem-
ory alignment, and also portability issues to other SIMD architectures. However, vector
hardware vendors do provide low-level vector intrinsics/APIs to explicitly program.
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2.1.2 Domain-Specific Parallel Architectures

Like general-purpose parallel architectures, domain-specific parallel architectures are also
programmable devices with multiple compute units, but these architectures are limited to
specific applications/domains. In general, the domain-specific architectures have custom
datapaths with scratchpad buffers and specific functional units tailored for the specific do-
mains. These processors are also designed to be extremely efficient in performance and
energy for the specific applications/domains.

Spatial DNN Accelerators

PE

Shared Buffer (L2 Scratch Pad)

Network-on-Chip (NoC)
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ALU (MAC Unit)
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Figure 2.3: An abstract overview of a spatial DNN accelerator model which is pervasive in many
state-of-the-art accelerators [40, 41, 42, 43, 44].

Spatial DNN accelerators based on ASICs and FPGAs have emerged to address extreme
demands on performance and energy-efficiency of Deep Neural Networks (DNNs) [40, 45,
46, 42, 41, 43]. Such accelerators are built using an array of processing elements (PEs) to
provide high parallelism and use direct communication instead of via shared memory for
energy-efficiency. An abstract model of spatial accelerators is shown in Figure 2.3.

Each PE of an accelerator consists of a single/multiple ALU(s) dedicated to multiply-
accumulate operations (MACs) and a local scratchpad (L1 buffer). Also, accelerators em-
ploy various network-on-chip (NoCs) for direct communication among PEs and between
PE array and L2 scratchpad buffer. The interconnection network often supports multi-
casting data to multiple PEs, which can reduce the total number of data reads from L2
buffer to PEs. Unlike GPU cores, PEs can communicate with adjacent PEs (data forward-
ing) using an NoC, which can significantly reduce the energy consumption for expensive
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L2 buffer accesses. Accelerators also typically employ a large shared L2 scratchpad buffer
to stage data from DRAM and results from PE arrays. Note that both L1 and L2 scratchpad
buffers are software-controlled memories, i.e., programmer directly controls the contents
of each memory block, unlike cache memories, it implicitly stores data with contiguous
addresses within a block for the spatial locality. This is because the memory traffic in
accelerators is known in advance, unlike it is arbitrary in multi-core systems, allowing fine-
tuning of memory block contents for further optimization. Many spatial accelerators can
be further interconnected together to create a scale-out system [47].

Systolic arrays [43] are also popular DNN accelerators, which entirely relies on the
point-to-point connection among adjacent PEs for input data distribution and partial sum
accumulations. That is, systolic arrays distribute input data and accumulate partial sums
via store-and-forward. Typically, systolic arrays are two dimensional, and each dimension
is used for data forwarding and partial sum accumulation, respectively. Although systolic
arrays can provide high throughput and energy efficiency, they lack flexibility in its data
flow due to their rigid NoC architecture. Such inflexibility allows limited data flow style,
leading to low compute unit utilization depending on the layer type and dimensions. There-
fore, in this dissertation, we focus on spatial accelerators providing more flexibility from
NoC to explore massive benefits from data flow/schedule optimizations.

Programming: Programmers rely on mappers (compilers) to effectively map deep learn-
ing computations and generate hardware-compatible code for a given spatial accelerator.
The output code involves the configuration for each processing element and scratchpad.

Specialized Vector Processing Units

There is a strong resurgence of interest in improving vector processing (SIMD) units due
to the significant energy efficiency benefits of using SIMD parallelism. These benefits in-
crease with widening SIMD vectors, reaching vector register lengths of 2048 bits in the
scalable vector extension of the Armv8 architecture [48]. There is an emphasis on special-
izing SIMD units to improve further energy efficiency benefits for specific domains such as
Machine learning, Computer Vision, and 5G Wireless. An important specialization, which
is referred to as “2D vector SIMD datapath” [31, 32, 33], is the ability of each vector lane
to execute more than one scalar operation and to chain the results from one operation to
another. Another specialization includes the removal of expensive data permutation units
(e.g., shuffle units) [34, 35] and instead introduce sophisticated, programmable intercon-
nection networks (a.k.a shuffle networks) between the SIMD datapath and vector register
file to support the required data permutation patterns [36, 33].

A recent industry example with these specializations is the Xilinx Versal AI Engine [49],
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a high-performance VLIW SIMD core which can deliver performance comparable to tradi-
tional FPGA solutions for Computer Vision, Deep Learning, and 5G wireless domains, but
with 50% less power consumption and up to eight times more compute capacity per silicon
area [49]. A high-level overview of the AI Engine architecture can be seen in Figure 2.4.
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Figure 2.4: An abstract overview of a specialized vector processing unit in the Xilinx AI Engine.

Programming: These high-performance specialized AI Engines are programmed using
the C/C++ programming language with optional pragmas. Currently, the AI Engine com-
pilers do not advertise support for auto-vectorization, and application programmers write
vectorized code explicitly using architecture-specific vector intrinsics. However, the AI
Engine compilers have support for automatic software pipelining [50] of innermost loops
to exploit instruction-level parallelism.

Thread Migratory Architectures

Since graph applications are typically cache-unfriendly and are not well supported by ex-
isting traditional architectures, there is growing attention being paid by the architecture
community to innovate suitable architectures for such applications. One such innovation is
the Emu system, a highly scalable near memory system with support for migrating threads
without programmer intervention [15]. The system is designed to improve the performance
of data-intensive applications that exhibit weak locality, i.e., from irregular and cache-
unfriendly memory access, which are often found in graph analytics [51] and sparse matrix
algebra operations [52].

An Emu system consists of multiple Emu nodes interconnected by a fast-rapid IO net-
work, and each node (shown in Figure 2.5) contains nodelets, stationary cores and migra-
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tion engines. Each nodelet consists of a Narrow Channel DRAM (NCDRAM) memory unit
and multiple Gossamer cores, and the co-location of the memory unit with the cores makes
the overall Emu system a near-memory system. Although each nodelet has a different phys-
ical co-located memory unit, the Emu system provides a logical view of the entire memory
via the partitioned global address space (PGAS) model with memory contributed by each
nodelet. Each gossamer core of a nodelet is a general-purpose, simple, pipelined proces-
sor with no support for data caches and branch prediction units. The core is also capable
of supporting 64 concurrent threads using fine-grain multi-threading. A key aspect of the
Emu system is thread migration by hardware, i.e., a thread is migrated on a remote memory
read by removing thread context from the nodelet and transmitting the thread context to a
remote nodelet without programmer intervention. As a result, each nodelet requires multi-
ple queues such as service, migration, and run queues to process threads spawned locally
(using spawn instruction) and also migrated threads.

Figure 2.5: An abstract overview of a thread migratory architecture in the EMU (figure source: [53]).

Programming: The Emu system supports the Cilk parallel programming model for
thread spawning and synchronization using cilk spawn, cilk sync and cilk for con-
structs [54]. Since the Emu hardware automatically takes care of thread migration and
management; hence the Cilk run-time is discarded in the toolchain. Also, it is essential to
note that appending a cilk spawn keyword before a function invocation to launch a new
task is directly translated to the spawn instruction of the Emu ISA during the compila-
tion. The Emu system provides libraries for data allocation and distribution over multiple
nodelets, and intrinsic functions for atomic operations and migrating thread control func-
tions. Also, there has been significant progress in supporting standard C libraries.
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2.2 High-Performance Applications

2.2.1 Scientific Computing Applications

Scientific computing involves the development of computational models and simulations
to solve problems science (e.g., biological, physical, and social) and engineering to under-
stand them better. Some of the scientific computing applications include large-scale climate
prediction, computational fluid dynamics, high-dimensional tensor contractions, and tradi-
tionally the scientific applications have dominated the need for performance to advance
research in science and engineering.

Programming: Optimizing compilers [55, 56, 20, 21] involving automatic paralleliza-
tion and vectorization was one of the major approaches in optimizing the scientific appli-
cations for higher-performance. But, with the limitations of automatic parallelization and
vectorization arising from unanalyzable regions of code at compile time, writing explicitly-
parallel programs using parallel programming models (e.g., OpenMP [57], Chapel [58],
Cilk [59], and X10 [60]) along with libraries became the dominant approach for scientific
applications to get better performance. However, domain-specific compilers (e.g., [61, 62])
have recently become popular to program particular domains of scientific application, be-
cause of its ability to exploit domain-specific properties in customizing optimizations for
the domain and also the target hardware.

2.2.2 Deep Learning

Deep learning (DL) has become a fundamental technology for many emerging applications
such as autonomous driving, translation, and image classification, with accuracy close to
and even surpassing humans. The applications involve different Deep Neural Network
models (DNNs) for different tasks in an application. Convolution Neural Networks (CNNs)
are one of the most popular DNNs for image recognition [3]. Among many layers in
CNN models, convolution layers account for more than 90% of overall computation [63,
40], dominating overall latency and energy consumption in inferences. A convolution is a
mathematical operation that computes the amount of overlap of a function g as it is shifted
over another function f , and it is symbolically represented as f ◦ g. In this description, we
restrict our attention to describing CONV2D, a popular convolution operator widely used
in Deep learning [64, 65, 3, 66, 67, 68] and Computer Vision [69, 70, 71, 72]. In these
domains, the function f and g are referred to as the “input” tensor (a.k.a image/activations)
and “weight” tensor (a.k.a filters/kernels), respectively. The CONV2D deals with three
four-dimensional tensors, i.e., Output (O), Weight (W), and Input (I), whose dimensions
are described below.
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Tensor Dim1 Dim2 Dim3 Dim4
Output (O) Width (X) Height (Y) Channels (K) Batch (N)
Weight (W) Width (R) Height (S) Channels (C) Batch (K)

Input (I) Width (X’) Height (Y’) Channels (C) Batch (N)

The mathematical expression of the CONV2D operations is shown below, where f

refers to stride factor.

O(x, y, k, n) =

C∑
c

S∑
s

R∑
r

W(r, s, c, k)

× I(x × f + r, y × f + s, c, n)

The convolutions used in Computer Vision are special cases of the CONV2D operator,
where each tensor has only the first two dimensions (width and height) and stride factor
set to one. However, there exists a wide variety of filter sizes (ranging from 2 to 11)
used in many different image processing operators, such as Gaussian smoothing and edge
detection [69]. A wide variety of other specialized variations of the CONV2D operator
are used in Convolutional Neural Networks such as point-wise, depth-wise separable, and
spatially separable convolutions. These variations can be viewed as constraints on the
regular CONV2D operator, and these are shown below.

Operator Constraints on CONV2D
Point-wise (PW) Filter width = Filter height = 1

Fully-connected (FC) Filter width = Input width
Filter height = Input height

Spatially separable (SS) Filter width = 1 or Filter height = 1
Depth-wise separable (DS) Input channels = Filter channels = 1

Furthermore, the CONV2D operator can also be used to describe other DNN operators
such as LSTMs [73] used in Recurrent Neural Networks. Even though we briefly described
the CONV2D operator and its variations, our approach applies to other convolution opera-
tors such as CONV1D and CONV3D.

Programming: High-performance tensor convolutions are generally realized through
high-performance libraries such as Intel MKL/DNNL [74] for Intel platforms, NVIDIA
cuDNN [75] for NVIDIA platforms, and also use of domain-specific compilers such as
Halide [70], TVM [76] for a variety of target platforms including CPUs, GPUs, and FPGAs.
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2.2.3 Graph Analytics

Graph analytics or Graph algorithms are used to uncover insights about information stored
in graph representation, i.e., to determine the strength and direction of relationships be-
tween objects in a graph [77]. Graph analytics applications include performing the breadth-
first search traversal, shortest path solution, finding connected components, and page rank.
In the last decade, large-scale graph processing has become a relevant application domain
for high performance because of the prevalence of graph data in real-world applications
such as social networks and their rapidly increasing size [1, 2].

Programming: In general, high-performance graph algorithms are programmed using
frameworks such as Google’s Pregel [78] for distributed systems, and also using high-
performance libraries such as nvGraph [77] for GPUs. Also, domain-specific compilers
such as Green-Marl [79] and GraphIt [80] are also becoming a popular approach to generate
efficient high-performant code from a high-level specification of graph algorithms for a
variety of target hardware platforms.

2.3 Summary

From this chapter, we can observe two trends: the computer hardware is undergoing through
a significant disruption to improve computing capabilities as we approach the end of Moore’s
Law, for, e.g., in the form of light-weight multi-cores, specialized SIMD units, spatial ac-
celerators, and thread migratory hardware. Also, the demand for higher performance is
broadening across multiple application domains, and also these application domains are
evolving at a rapid pace. The above trends pose a plethora of challenges to application
development using high-performance libraries (as can be seen from this chapter on pro-
gramming), which is the de-facto approach to achieving higher performance. Some of
the challenges in using library-based approaches are porting/adapting to multiple emerging
parallel architectures, supporting rapidly advancing domains, and inhibiting optimizations
across library calls. Hence, there is a renewed focus on optimizing compilers (including
domain-specific compilers) from industry and academia to address the above trends. How-
ever, it requires advancements in enabling them to a wide range of applications and better-
exploiting current and future parallel architectures, which is the focus of this dissertation,
and the rest of the thesis chapters focus on advancements to the optimizing compilers.

19



CHAPTER 3
POPP: POLYHEDRAL OPTIMIZATIONS OF EXPLICITLY-PARALLEL

PROGRAMS

3.1 Abstract

The polyhedral model is a powerful algebraic framework that has enabled significant ad-
vances to analysis and transformation of sequential affine (sub)programs, relative to tradi-
tional AST-based approaches. However, given the rapid growth of parallel software, there
is a need for increased attention to using polyhedral frameworks to optimize explicitly par-
allel programs. An interesting side effect of supporting explicitly parallel programs is that
doing so can also enable optimization of programs with unanalyzable data accesses within
a polyhedral framework. In this thesis, we address the problem of extending polyhedral
frameworks to enable analysis and transformation of programs that contain both explicit
parallelism and unanalyzable data accesses. As a first step, we focus on OpenMP loop
parallelism and task parallelism, including task dependences from OpenMP 4.0.

A summary of our approach [26, 27] is as follows. We first enable conservative depen-
dence analysis of a given region of code by introducing dummy variables that can work
with any polyhedral tool that supports access functions. After obtaining conservative de-
pendences, the Fourier-Motzkin elimination method is used to remove all dummy variables.
Next, we identify happens-before relations from the explicitly parallel constructs, notably
parallel loops and tasks, and intersect them with the conservative dependences. The re-
sulting set of dependences is then passed on to a polyhedral optimization tool, such as
PolyAST, to enable transformation of explicitly-parallel programs with unanalyzable data
accesses.

We evaluate our approach using twelve OpenMP benchmark programs from the KAS-
TORS and Rodinia benchmark suites. We show that 1) these benchmarks contain unan-
alyzable data accesses that prevent polyhedral frameworks from performing exact depen-
dence analysis, 2) explicit parallelism can help mitigate the imprecision, and 3) polyhe-
dral transformations with the resulting dependences can further improve the performance
of manually-parallelized OpenMP programs. Our experimental results show performance
improvements for these OpenMP programs on a 12-core Intel Westmere platform and a
24-core IBM Power8 platform.
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3.2 Introduction

A key challenge for optimizing compilers is to keep up with the increasing complexity re-
lated to locality and parallelism in modern computers, especially as computer vendors head
towards new designs for extreme-scale processors and exascale systems [81]. Classical
AST-based optimizers typically focus on one particular objective at a time, such as vector-
ization, locality or parallelism. In contrast, polyhedral transformation frameworks support
complex sequences of transformations of perfectly/imperfectly nested loops in a unified
formulation. The advantages of this unified formulation are seen in polyhedral optimizers,
such as PLuTo [20, 21] and PolyAST [22]. It has even been extended and specialized to
integrate SIMD constraints [23]. Polyhedral frameworks achieve this generality in trans-
formations by restricting the class of programs that do not have unanalyzable control or
data flow. In the original formulation of polyhedral frameworks, all array subscripts, loop
bounds, and branch conditions in analyzable programs were required to be affine functions
of loop index variables and global parameters. However, decades of research since then
have led to a great expansion of programs that can be considered analyzable by polyhedral
frameworks. The main remaining constraints stem from restrictions on various program
constructs including pointer aliasing, unknown function calls, non-affine expressions, re-
cursion, and unstructured control flow.

Our work is motivated by the observation that software with explicit parallelism is on
the rise. It can be used to enable larger set of polyhedral transformations (by mitigating
conservative dependences), compared to what might have been possible if the input pro-
gram is sequential. Our work focuses on explicitly-parallel programs that specify potential
logical parallelism, rather than actual parallelism. Thus, explicit parallelism is simply a
specification of a partial order, traditionally referred to as a happens-before relations [82].
Dependences can only occur among statement instances that are ordered by the happens-
before relations. Hence, we can reduce spurious dependences arising from the unanalyz-
able constructs by intersecting happens-before relations with conservative dependences.

In this work, we restrict our attention to explicitly-parallel programs that satisfy the
serial elision property, i.e., the property that removal of all parallel constructs results in a
sequential program that is a valid (albeit inefficient) implementation of the parallel program
semantics [54]. We observe that loop-level and task-level parallelism form the core of
modern parallel programming languages, such as OpenMP [57], Chapel [58], Cilk [59],
and X10 [60]. So, we focus our attention on loop-level and task-level constructs in OpenMP
that satisfy the serial elision property, while deferring support for SPMD constructs that do
not satisfy this property to future work.
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A summary of our approach is as follows. We first enable conservative dependence
analysis of a given region of code. Next, we identify happens-before relations from the
explicitly parallel constructs and intersect with the conservative dependences. Finally, the
resulting set of dependences is passed to the polyhedral transformation tools, such as PLuTo
[20, 21] and PolyAST [22], to enable the transformations of explicitly-parallel programs
with unanalyzable data accesses. To the best of our knowledge, our work is the first to en-
able the polyhedral transformations of explicitly parallel OpenMP programs by combining
the classical dependence analysis with happens-before analysis for explicit parallelism1.

The rest of the chapter is organized as follows. Section 3.3 summarizes background
material, and Section 3.4 motivates the problem using OpenMP benchmark programs. Sec-
tion 3.5 provides an overview of our approach for enabling polyhedral transformations of
explicitly parallel programs; we refer to our framework as the Polyhedral optimizer for Par-
allel Programs (PoPP). Section 3.6 presents experimental results to evaluate our approach
on OpenMP benchmarks from the Kastors [83] and the Rodinia [84] benchmark suites on
a 12-core Intel Westmere processor and a 24-core IBM Power8 system.

3.3 Background

We start with a brief overview of the polyhedral model, the basis of the proposed optimizing
framework. Next, we briefly summarize explicit-parallelism including loop-level and task-
level parallelism in the context of OpenMP [57], which is a widely used shared memory
parallel programming model.

3.3.1 Polyhedral Model

The polyhedral model is a flexible representation for perfect and imperfect loop nests with
static predictable control. Loop nests amenable to this algebraic representation are called
Static Control Parts (SCoPs). It consists of a set of consecutive statements, and each state-
ment contains three elements namely iteration domain, access relations, and schedule. The
loop bounds, branch conditions, and array subscripts in the SCoP need to be affine functions
of iterators and global parameters. A code region that does not strictly satisfy the above
requirements can be also represented in the polyhedral model via conservative estimations.
Iteration domain, DS: A statement S enclosed by ‘m’ loops is represented by a m-
dimensional polytope, referred to as an iteration domain of the statement [85]. Each el-
ement in the iteration domain of the statement is regarded as a statement instance.

1An earlier version of this work was informally presented at the IMPACT’15 workshop [26], which is a
forum that does not include formal proceedings.
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Access relation: Each array expression in the statement is expressed through an access
relation in the SCoP. An access relation maps the statement instance to one or more array
elements [86]. It can conservatively support non-affine array expressions by mapping them
to multiple array elements, perhaps even the entire range of the array. An example of a non-
affine array access is shown below. The array reference to x is an indirect access via col[j]
and is considered to read the entire range of x[*] to enable conservative estimations. In
contrast, an access function maps a statement instance to a single array element, and cannot
support non-affine accesses as a result.

1 for(i = 0; i < n; i++)

2 for(j = index[i]; j < index[i+1]; j++)

3 y[i] += A[j]*x[col[j]];

Schedule: is a function which associates a logical execution date (a timestamp) to each
instance of a given statement. In the case of multidimensional schedules, this timestamp is
a vector. In the program, statement instances will be executed according to the increasing
lexicographic order of their timestamp.
Dependence Polyhedra, PS→T : captures all possible dependences between statements
S and T . Two statement instances ~Xs and ~Xt, which belong to the iteration domains of
statements S and T respectively, are said to be in dependence if they access the same array
location and at least one of them is a write. Multiple dependence polyhedra may be required
to capture all dependent instances between two statements (scalars are simply treated as
zero-dimensional arrays). For a given schedule, depth of a dependence polyhedron
indicates the loop nest level where its dependence is carried. In other words, depth is the
first non-zero dimension of the corresponding dependence vector.

A dependence polyhedron captures exact dependence information when each of the ac-
cess relations is an access function or if the access relation models an exact read/write of an
array range, e.g., a memset of an entire array. However, dependence polyhedra can be over-
estimated due to conservative access relations when array subscripts include unanalyzable
accesses.

3.3.2 Explicit Parallelism

The major difference between sequential programs and explicitly-parallel programs is that
sequential programs specify a total execution order, whereas the execution of an explicitly-
parallel program can be viewed as a partial order, which is traditionally referred to as a
happens-before relation. We briefly summarize the loop-level and task-level constructs in
the context of OpenMP [57].
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Loop-level parallelism

The OpenMP loop construct, #pragma omp for, is specified immediately before a for
loop. This construct indicates that the iterations of the loop can be executed in parallel,
which guarantees no happens-before relations among iterations. A barrier, i.e., an all-to-all
synchronization point, is implied immediately after the parallel loop region.

The private(op: list) clause, which is attached to a for loop construct, indicates
that each OpenMP thread has its own private copies of the variables specified in list.

Task-level parallelism including dependences

The OpenMP task construct, #pragma omp task, is specified on a code region and indi-
cates the creation of an asynchronous task to process the region. Synchronization among
the parent task and its child tasks (i.e., tasks spawned by the parent task) is supported by
the taskwait construct, #pragma omp taskwait. This directive specifies a synchro-
nization point at which the encountering task waits for all its child tasks to complete.
Synchronization among the sibling tasks with the same parent task is supported by the
depend(type: vars) clauses attached on a task construct. Here, type is in, out, or
inout to imply read, write, or read-and-write access on vars, which is a list of variables
that can include arrays2. The ordering constraints enforced by the depend clauses are as
follows:

• in dependence-type. The generated task will be a dependent task of all previously
generated sibling tasks that reference at least one of the list items in an out or inout
depend clause.

• out and inout dependence-types. The generated task will be a dependent task of all
previously generated sibling tasks that reference at least one of the list items in an
in, out, or inout depend clause.

A task can start its execution only when all the dependent tasks have completed. These
dependences on previous generated tasks enforce serial elision property. More details on
these constructs can be found in [87].

3.4 Motivating Examples

To motivate the proposed approach, we discuss two explicitly parallel kernels with data
accesses that are likely to be considered unanalyzable by many existing polyhedral frame-
works. The first example uses C nested arrays which may have an unrestricted pointer

2Any type or rank of arrays are permitted; in Figure 3.1, 1-D array of type double (*)[ny] are used.
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aliasing, in general. The second example uses linearized (non-affine) array subscripts that
would require a de-linearization analysis to make them analyzable by polyhedral frame-
works.

3.4.1 2-D Jacobi

1 jacobi (double *u_, double *unew_, double *f_) {

2 double (*f)[nx][ny] = (double (*)[nx][ny])f_;

3 double (*u)[nx][ny] = (double (*)[nx][ny])u_;

4 double (*unew)[nx][ny] = (double (*)[nx][ny])unew_;

6 #pragma omp parallel

7 #pragma omp single

8 {

9 for (int it = itold + 1; it <= itnew; it++) {

10 for (int i = 0; i < nx; i++) {

11 #pragma omp task depend(out: u[i]) depend(in: unew[i])

12 for (int j = 0; j < ny; j++) {

13 (*u)[i][j] = (*unew)[i][j];

14 } }

15 for (int i = 0; i < nx; i++) {

16 #pragma omp task depend(out: unew[i]) depend(in: f[i], u[i-1],←↩

u[i], u[i+1])

17 for (int j = 0; j < ny; j++) {

18 if (i == 0 || j == 0 ||

19 i == nx - 1 || j == ny - 1) {

20 (*unew)[i][j] = (*f)[i][j];

21 } else {

22 (*unew)[i][j] = 0.25 * ((*u)[i-1][j]

23 + (*u)[i][j+1] + (*u)[i][j-1]

24 + (*u)[i+1][j] + (*f)[i][j] * dx * dy);

25 } } } }

26 #pragma omp taskwait

27 } }

Figure 3.1: 2-D Jacobi kernel from KASTORS suite.

The first example (in Figure 3.1) is a 2-dimensional Jacobi computation from the KAS-
TORS suite [83]. This computation is parallelized using the OpenMP 4.0 task construct
with depend clauses. Even though the loop nest has affine accesses on arrays u and unew,
the possible aliasing of the flat array pointers can prevent a sound compiler analysis from
detecting the exact cross-iteration dependences. However, the happens-before relations
described through the task depend clauses (lines 13-14, lines 19-20) indicate uniform
dependence patterns only among neighboring iterations (i.e., u[i-1], u[i], and u[i+1]),

25



which enable skewing, tiling, and doacross pipelined parallelization. Section 3.6 shows
how these transformations improve the data locality and the parallelism granularity and
contribute the overall performance. However, there exist speculative approaches that add
code to the program to check if all referenced arrays of a loop nest do not overlap and to
generate optimized variants that can be selected at runtime [88].

3.4.2 Particle Filter

The second example (in Figure 3.2) is the particle filter kernel from the Rodinia
suite [84]. The loop nests in the kernel contain linearized (non-affine) array subscripts such
as ind[x*countOnes+y], and indirect array subscript (I[ind[x*countOnes+y]]), that
may pose challenges to the compiler for analysis.

Although de-linearization techniques [89] can handle the ind[x*countOnes+y] case,
and the fact that array I is read-only in the kernel can be used to handle the I[ind[x*countOnes+y]]
case, the use of parallel loop constructs can prune conservativeness in dependence analysis,
even in the absence of techniques such as delinearization. The legality of loop fusion is
easily established by the fact that all variables that cross multiple loops have affine accesses
with no fusion-preventing dependences and the arrays don’t alias each other, as these arrays
are malloc(ed) in the same kernel. The key information needed from the parallel program
is that the second loop (lines 19-28 in Figure 3.2) has no loop-carried dependence. This
ensures that the resulting loop after fusing all four loops can also be made parallel.

3.5 Polyhedral optimizer for Parallel Programs (PoPP)

In this section, we introduce our framework for automatically optimizing explicitly parallel
programs.

Algorithm 1: Overall steps in PoPP
1: Input: Explicitly parallel program, I
2: P := set of conservative dependences in I
3: HB := Transitive closure of happens-before relations from parallel constructs in I
4: P′ := P ∩HB ,
5: Optimized schedules, S = Transform(I, P′)
6: I′ = CodeGen(I, S, P′ )
7: Output: Optimized explicitly parallel program, I′

Algorithm 1 shows the overall approach to conservatively handle unanalyzable accesses
(step 2), extract happens-before (HB) relations from explicit parallelism (step 3), and im-
prove the accuracy of conservative dependences (step 4). Then the resulting dependences
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1 #define ALLOC(N) (double *) malloc(sizeof(double)*N)

2 void particleFilter(int *I, int Nparticles) {

3 ....

4 double *weights = ALLOC(Nparticles);

5 double *arrayX = ALLOC(Nparticles);

6 double *arrayY = ALLOC(Nparticles);

7 double *likelihood = ALLOC(Nparticles);

8 double *objxy = ALLOC(countOnes*2);

9 int *ind = (int*)malloc(sizeof(int) * countOnes*Nparticles);

11 #pragma omp parallel for

12 for(x = 0; x < Nparticles; x++){

13 arrayX[x] += 1 + 5*randn(seed, x);

14 arrayY[x] += -2 + 2*randn(seed, x);

15 }

17 #pragma omp parallel for private(y, indX, indY)

18 for(x = 0; x < Nparticles; x++){

19 for(y = 0; y < countOnes; y++){

20 indX = roundDouble(arrayX[x]) + objxy[y*2+1];

21 indY = roundDouble(arrayY[x]) + objxy[y*2];

22 ind[x*countOnes+y] = fabs(indX ... indY ...);

23 ...

24 likelihood[x] += ...I[ind[x*countOnes+y]]...

25 }

26 ...}

28 #pragma omp parallel for

29 for(x = 0; x < Nparticles; x++){

30 weights[x] = weights[x] * exp(likelihood[x]);

32 #pragma omp parallel for private(x) reduction(+:sumWeights)

33 for(x = 0; x < Nparticles; x++)

34 sumWeights += weights[x];

35 }

36 ....

37 }

Figure 3.2: Particle filter kernel from Rodinia suite

are passed to polyhedral optimizers, such as PolyAST and PLuTo, to leverage existing loop
transformations (step 5). Finally, the code generator is invoked to generate the optimized
parallel program (step 6).

The overall approach is summarized in Figure 3.3, which is implemented as an exten-
sion to the PolyAST optimization framework [22] implemented in the ROSE compiler [90],
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Figure 3.3: Overview of our approach

and consists of the following components: 1) Conversion from source code to AST (with
support for parallel-loop and parallel-task constructs), 2) AST Modifier (handling unana-
lyzable accesses), 3) AST to SCoP converter for regular statements, 4) AST to task SCoP
converter (preprocessing of computing HB relations based on task parallelism), 5) Loop HB
analyzer to compute HB relations based on loop level parallelism, 6) Use of CANDL [91]
for both conservative dependence analysis and computing task-based HB relations, 7) In-
tersection of conservative dependences with HB relations, 8) Communication of the re-
sulting set of dependences to a polyhedral transformation tool, such as PLuTo [20] and
PolyAST [22], and 9) Code generator to produce automatically optimized code.

3.5.1 Conservative analysis

In case of unanalyzable data accesses, compilers must follow conservative dependence
analysis that overestimates dependences and may report spurious dependences. In conser-
vative dependence analysis, the basic assumption for a compiler is that all memory accesses
of an array in a statement can potentially conflict with other memory accesses of that array,
or perhaps even memory accesses in other arrays (in the case of unrestricted pointer alias-
ing). In this work, we support such conservative assumptions by using the dummy variable

approach described below.
Handling non-affine array subscripts. Non-affine subscripts such as linearized array
subscripts and indirect array subscripts are common in regular benchmarks. These non-
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affine subscripts can be handled using the access relations in polyhedral extraction tools by
assuming that they access the entire range instead of a single element in the array. Since
our polyhedral framework in the infrastructure supports access functions but not access
relations, we implemented similar functionality using a dummy variable approach. We
treat non-affine subscript as a dummy variable and create affine inequalities such that these
variables access the entire range of the array dimension [26]. There exist other conservative
approaches such as array region analysis [92], fuzzy array data flow analysis [93] and other
variants to approximate the access relations for arrays having non-affine subscripts.
Handling function calls. Function calls in the kernel pose challenges to polyhedral frame-
works for analysis and transformations. We handle library/ user-defined function calls
by treating them as regular statements and conservatively assume the statements read and
write any array in the SCoP. But, there exist other sophisticated approaches such as array
region analysis [94] used in PIPS compiler to approximate access relations and enhance
dependence analysis in case of procedure calls.
Handling non-affine conditionals. Currently, polyhedral extraction tools have limitations
in representing non-affine branch conditions in a polyhedral representation (SCoP). As a
workaround, we handle an if-statement with a non-affine conditional and its corresponding
then and else branches as a compound statement that inherits all the access relations in
the condition, and the then and else branches3. Note that we allow multi-write per state-
ment in the framework. For the benchmarks studied in Section 3.6, such non-affine control
flows are closed within a loop body; this approximation keeps the granularity of compound
statements small enough to enable transformations and parallelization. The Polyhedral Ex-
traction Tool (PET) [95] also provides a way to represent data dependent assignments, data
dependent accesses and data dependent conditions in the access relations.

After converting the given parallel program into polyhedral representation (SCoP) with
above modifications, we use an existing polyhedral dependence analyzer (CANDL [91])
with the sequential schedule ignoring parallel constructs. The resulting dependence poly-
hedra can be directly used as conservative dependences. Adhering to polyhedral depen-
dence notations, we use PS i→S j

d to represent the dependence between source statement Si

and target statement S j at depth d where depth represents the loop nest level that carries the
data dependence. The conservative dependences for the Jacobi kernel (in Figure 3.5(a))
are shown in Figure 3.5(c).

3This has been manually performed for programs with non-affine conditionals in Section 3.6, but can be
automated in future work.
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3.5.2 Extraction of happens-before relations

Happens-before (HB) relations [82] have been introduced in describing memory models.
These relations can be defined as follows in the context of dependences between statements
in the program.

Assume Si and S j are the statements in the program. If Si happens-before S j, then the

memory effects of Si effectively become visible before statement S j is executed.

Explicit parallel constructs in the program specify the logical parallelism, which in
turn describes the happens-before relations on the statements in the program. Let US i→S j

d

represent a given sequential ordering between source statement Si and target statement S j

at depth d in the program when ignoring parallel constructs. Any happens-before relation
is initialized to this sequential ordering:

HB
S i→S j

d = U
S i→S j

d (3.1)

According to the explicit parallel constructs, the happens-before relations will be updated.
This section introduces our approach to compute such happens-before relations in the cases
of loop-parallel and task-parallel constructs, where the serial-elision property holds.

Loop-level parallelism

In the OpenMP, loop-level parallelism is expressed through the #pragma omp parallel
for construct. This particular construct is annotated on specific loops whose iterations can
run in parallel, thereby it guarantees there are no happens-before relations among iterations
of the annotated loop. Let S i and S j be statements enclosed in a parallel for loop at
depth d, the corresponding happens-before relation is updated as:

HB
S i→S j

d = φ (3.2)

Note that the variables specified within private clause are expanded as arrays such that
each parallel iteration accesses a unique element of the arrays, before the polyhedral com-
pilation. In the post-polyhedral phase, the expanded arrays are replaced by the original
variables with private attribute if they remain in parallel loops. This approach only ap-
plies to cases where each parallel loop is in an OpenMP parallel region by itself, and not to
general OpenMP parallel regions (which are not supported by the approach in this work).
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Figure 3.4: Happens-before relations for the Jacobi program in Figure 3.5(a) due to task-spawn,
task-wait, and sequential ordering

Task parallelism including dependences

In OpenMP, task parallelism is specified through the task, taskwait, and depend con-
structs. As described in Section 3.3.2, these constructs specify ordering constraints 1) from
parent task to child tasks via task-spawn, 2) from child tasks to parent task via task-wait,
and 3) among sibling tasks via inter-task dependence. Computing happens-before rela-
tions in the presence of the inter-task dependences is challenging as it requires dependence
analysis on the variables including arrays listed in the depend(in/out) clause.

In our approach, we encode these task-related constructs in the SCoP format by han-
dling tasks as statements and in/out dependence type as read/write access; this is later
processed by polyhedral dependence analyzers such as CANDL [91]. The resulting depen-
dence polyhedra, Ptask

S i→S j

d , are used as happens-before relations due to inter-task depen-
dences among sibling tasks:

HB
S i→S j

d = Ptask
S i→S j

d (3.3)

The other relations among parent and child tasks are captured in the same manner by intro-
ducing special dependence variables shared by parent and children. We detail our approach
in the rest of this section.
Task SCoP. Given a code region that contains task constructs, we define task SCoP that
captures all required information to compute happens-before relations derived from tasks.
As with regular SCoP, it includes set of statements and access relations which are modified
as follows while domains and schedules are same as those in regular SCoP. Statement.
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The statements not enclosed in a task construct are handled in the same manner as regular
SCoP statements. The #pragma omp task and #pragma omp taskwait are also han-
dled as stand-alone statements that represent task-spawn and task-wait points, respectively.
Finally, the body of task construct is handled as a compound statement, say task-body

statement.

Figure 3.5: Overall explanation of our framework on Jacobi benchmark from KASTORS suite.

Figure 3.4 shows an example corresponding to the Jacobi kernel in Figure 3.5(a), where
two task-spawn statements are represented as T1 and T2, a task-wait statement is Tw, and
task-body statements are shown as S1 and S2.
Access relation. The in and out dependence types in depend clause are respectively
handled as read and write accesses in the corresponding task-body statement (e.g., read:
unew[i], write: u[i] of S1 in Figure 3.4). In order to capture happens-before relations
between parent and child tasks, we introduce the following special dependence variables
and add to access relations.
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• Spawn variable Spni is added as a read access in i-th task-spawn statement and a write
access in its task-body statement; the resulting Write-After-Read (WAR) dependence
captures the ordering constraint on this specific task-spawn.

• Join variable Join is added as a read access in task-body statements and a write
access in task-wait statements so that the WAR dependences capture ordering con-
straints on task-wait, which waits for all child tasks.

• Continue variable Continue is added as a write access in all statements by parent
(i.e., task-spawn, task-wait, and regular statements) so that the Write-After-Write
(WAW) dependences capture the sequential ordering.

Further, nested task graphs can be easily supported with the use of multiple join/continue
variables for each level of nesting. The edges in Figure 3.4 represent the happens-before
relations due to task-spawn, task-wait, and sequential ordering, which are computed by
CANDL dependence analyzer. As with Equation 3, the resulting dependence polyhedra
are used as happens-before relations based on any task parallel constructs, after mapping
task-body statements (i.e., compound statements) to regular statements. We use function
inlining to handle tasks in non-recursive calls. However, handling of tasks in recursive calls
is not currently supported by our approach.

3.5.3 Reflection of happens-before relations

Algorithm 2: Intersection of happens-before relations with conservative depen-
dences.

1: Input: Conservative dependences P, Happens-Before relationsHB
2: for each dependence PS i→S j

d in P do
3: for each HB relationHBS k→S l

e inHB do
4: if S i = S k & S j = S l & d = e then
5: P

′S i→S j

d = P
S i→S j

d ∩HB
S k→S l
e ;

6: end if
7: end for
8: Add the intersected polyhedron P′S i→S j

d to P′;
9: end for

10: Output: Accurate dependences after intersection P′

After the extraction of happens-before relations from parallel constructs such as loop-
level and task level constructs, it is necessary to reflect the happens-before relations onto
conservative dependences as it prunes the spurious dependences from the program. Note
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that HB is more conservative than P in all program regions that do not contain explicit
parallelism. Given conservative dependences P 3 PS i→S j

d and HB relations HB 3
HB

S k→S l
e , we define P′ = P ∩ HB where PS i→S j

d ∩ HB
S k→S l
e is non-empty if and only if

S i = S k & S j = S l & d = e. According to the definition, the happens-before relation
must be transitive (like all binary relations); our approach removes dependences only for
pairs of source and target instances that are not in the HB relation (including transitive
dependences). Therefore, the intersection keeps any dependences between code portions
that are not annotated as running in parallel.

Figure 3.5(e) shows the improved dependence information for the Jacobi kernel in
Figure 3.5(a), by intersecting the conservative dependences shown in Figure 3.5(c) with
happens-before relations shown in Figure 3.5(d). As shown in Figure 3.5(a), the whole
for-j loops are enclosed in task constructs; the happens-before relations at depth = 3
(i.e., HBS 1→S 1

3 and HBS 2→S 2
3 ) are not subject to task ordering constraints and kept as the

initial sequential order. Note it is also possible that some smart compilers detect parallelism
in the original codes, e.g., Intel compiler could detect vector parallelism at the innermost
level. Even in such cases, our approach can fully utilize explicit parallelism without miss-
ing any compiler-detected parallelism.

3.5.4 PolyAST: a loop optimizer integrating polyhedral and AST-based transformations

For the performance evaluation in Section 3.6, we used the PolyAST [22] framework to
perform loop optimizations, where the dependence information provided by the proposed
approach is passed as input. PolyAST employs a hybrid approach of polyhedral and AST-
based compilations; it detects reduction and doacross parallelism [96] in addition to regular
doall parallelism. In the code generation stage, doacross parallelism can be efficiently ex-
pressed using the proposed doacross pragmas in OpenMP 4.1 [87, 97]. These pragmas
allow for fine-grained synchronization in multidimensional loop nests, using an efficient
synchronization library [98].

The transformed code of Jacobi kernel (Figure 3.5(a)) based on dependence polyhedra
Figure 3.5(e) is shown in Figure 3.5(b). The ordered(2) at line 1 specifies the nest level
to place ordered depend directives. The ordered depend(sink: vec) at line 4 can
be viewed as a blocking operation that waits for the completion of iteration vec, e.g., (c1,
c3-1), while the ordered depend(source) at line 14 can be viewed as an unblocking
operation to indicate that the current iteration (c1, c3) has completed. Thanks to the
accurate dependence information at depths 1 and 2, outermost and secondary nested loops
were skewed and parallelized using doacross extensions [97, 22] while the innermost loops
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were kept as the original because of the conservative dependence at depth 3. Due to space
limitations, we omitted loop tiling at first and second nest levels although the permutability
after skewing guarantees tiling.

3.6 Experimental Evaluation

In this section, we present the evaluation of our approach. We begin with an overview of
the experimental setup and benchmark descriptions used in the evaluation. Then we discuss
the experimental results and conclude with a summary.

3.6.1 Experimental setup

Table 3.1: Details of architectures used for experiments.

Intel Xeon 5660
(Westmere)

IBM Power 8E
(Power 8)

Microarch Westmere Power PC
Clock speed 2.80GHz 3.02GHz
Cores/socket 6 12
Total cores 12 24
L1 cache/core 32 KB 32 KB
L2 cache/core 256 KB 512 KB
L3 cache/socket 12 MB 8 MB

Compiler gcc/g++ -4.9.2
icc/icpc -14.0 gcc/g++ -4.9.2

Compiler flags -O3 -fast(icc) -O3
Linux kernel 2.6.32 3.13.0

Platform: Our evaluation uses two different multi-way SMP multicore setups: an Intel
Westmere and a IBM Power8 system. Table 3.1 lists their hardware specifications. On
both architectures, GCC-4.9.2 is used for all benchmarks as it supports OpenMP 4.0 speci-
fications. On the Intel Westmere, the Intel C and C++ compiler (version-14.0) is also used
for evaluation of the Rodinia suite. But this compiler doesn’t support OpenMP 4.0 task
depend clauses and hence it is not used for evaluation of the KASTORS suite. On our IBM
Power8 machine, the IBM XLC compiler is currently unavailable for the experiments. Note
that our results include the -fast option for icc, but not the -Ofast option for gcc; this is not
a significant issue because we do not use these results to compare icc vs. gcc performance.

Benchmarks and experimental variants: We used the KASTORS and the Rodinia
suites to evaluate our approach. Benchmarks in these suites cover OpenMP loop and task
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Table 3.2: Sequential execution times of KASTORS and Rodinia on Intel Westmere and IBM Power
8 systems along with problem sizes. Intel ICC-14.0 compiler doesn’t support OpenMP 4.0 task
depend constructs. So, no execution time is reported for KASTORS on Intel platform with ICC
compiler. Transformations exposed by PoPP: Permutation (P), Fusion (F), Skewing (S), Tiling (T),
Doacross pipelined parallelism (D), No further optimizations (-). Manual modifications performed
before passing to PoPP: Replace complex if-statements by closures i.e., outlined functions (OF),
Delinearization on task-depend variables (D), Function inlining (F), Annotated inner loop as parallel
(AP), Annotated inner loop as parallel with array reductions (APR), Annotated with task-depend
constructs (AT), Removal of printf statements (R), No modifications (-).

Suite Benchmark
name

Manual
modifications

to source

Problem
Size

Sequential Exec time (Sec) Transform-
ations by

PoPP
Intel Westmere IBM Power8
ICC GCC GCC

Kastors
Jacobi OF

Matrix size: 2K
Time iterations: 200 - 4.412 4.914 F, S, T, D

Jacobi-Blocked D
Matrix size: 2K
Time iterations: 200 - 5.838 6.241 F, S, D

Sparse LU D, OF
Matrix size: 100
Block size: 25 - 1.632 2.284 F, D

Rodinia

Back prop. AP Layer size: 5 Million 1.660 1.659 0.705 P
CFD Solver - file: fvcorr.domn.097K 0.002 0.002 0.015 -

Hotspot AT, F
Matrix size: 8K
Time iterations: 12 5.828 19.385 12.532 F, S, T, D

Kmeans -
Clusters: 5
Attributes: 34 2.484 4.914 7.061 -

LUD APR Matrix size: 2K 7.866 8.633 30.471 P
Needle-Wunch AT Matrix size: 8K 1.962 1.964 8.603 P, T, D
Particle filter R Size: 10K 0.341 0.603 0.920 F

Path finder -
Size: 100K,
Time iterations: 100 0.208 0.030 0.066 -
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Figure 3.6: Evaluation of the KASTORS suite (using GCC compiler). Sequential times are reported
in Table 3.2. Original benchmark speedup is compared against with optimized codes from PoPP
with/ without considering happens-before (HB) relations.

(a) Intel Westmere with 12 cores (b) IBM Power8 with 24 cores

Figure 3.7: Evaluation of the Rodinia suite (using Intel compiler) on Intel Westmere with 12 cores.
Sequential times are reported in Table 3.2. Original benchmark speedup is compared against with
optimized codes from PoPP with/ without considering happens-before (HB) relations.

constructs. Also, these benchmarks have various data access patterns such as affine ar-
ray subscripts, linearized array subscripts, indirect array subscripts, unrestricted pointer
aliasing and unknown function calls. Table 3.2 summarizes problem sizes used for each
benchmark. The table also includes the sequential execution times for the benchmarks
while using different compilers on each platform. In all experiments, we report the mean
execution time measured over 10 runs repeated in the same environment for each data point.

In the following experiments, we compare two experimental variants: OpenMP to show
the original OpenMP parallel version running with all cores - i.e., 12 cores on Westmere
and 24 cores on Power8 - and PoPP to show the transformed version by our framework
running with all cores. The speedup of a program is defined as the execution time of the
serial version of the program divided by the execution time of the parallel version of the
program.
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Figure 3.8: Evaluation of Rodinia suite (using GCC compiler) on Intel Westmere with 12 cores.
Sequential times are reported in Table 3.2. Original benchmark speedup is compared against with
optimized codes from PoPP with/ without considering happens-before (HB) relations.

Figure 3.9: Evaluation of the Rodinia suite (using GCC compiler) on IBM Power8 with 24 cores.
Sequential times are reported in Table 3.2. Original benchmark speedup is compared against with
optimized codes from PoPP with/ without considering happens-before (HB) relations.
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3.6.2 KASTORS Suite

KASTORS suite is designed to evaluate the efficiency of OpenMP 4.0 task dependences [83].
This suite consists of five benchmarks namely Jacobi, Jacobi-Blocked, SparseLU, Strassen
and Plasma. Our implementation is currently unable to compiler Strassen due to its use of
recursive calls with tasks, and Plasma due to its use of C structs. As a result, we only pro-
vide results for Jacobi, Jacobi-Blocked and SparseLU from the KASTORS suite. Support
for recursive task parallelism and for supporting C structs are topics for future work.
Jacobi & Jacobi-Blocked (Poisson2D): The kernel of Poisson2D is the Jacobi example
discussed in Section 3.5.4 and Poisson2D - Blocked is the version where loop tiling/block-
ing is already applied in the OpenMP version. In both versions, the PoPP framework uti-
lized the explicit parallelism and applied loop fusion, skewing, tiling (only to non-blocked
version) and doacross parallelization. Figures 3.6(a) and 3.6(b) show that PoPP has much
better performance than OpenMP for the non-blocked version because of automatic loop
tiling; it also gave some improvements for the blocked version thanks to doacross paral-
lelization.
SparseLU. This benchmark computes LU decomposition of given sparse matrix. The com-
putation kernel is a triply nested imperfect loop nest, which contains four kinds of func-
tion calls with linearized (i.e., non-affine) array subscripts. In the OpenMP version, each
function call is annotated by task depend constructs to implement task parallelism with
inter-task dependences.

To the input kernel, we manually applied de-linearization [89] technique, which is not
yet supported in the current framework. As described in Section 3.5.1, our dependence
analyzer handled these function calls enclosed in non-affine if-statements4 and provided
conservative dependence information. Further, the proposed approach computed exact
dependence information by intersecting with the happens-before relations obtained from
task depend constructs. The PoPP framework applied loop fusion to make a perfect
loop nest and parallelized the outermost loop as doacross, as with Jacobi kernel discussed
in Section 3.5.4.

Figures 3.6(a) and 3.6(b) summarize the speedup comparing with sequential execution
on Westmere and Power8, which show that PoPP improved performances from 3.19× to
9.72× on Westmere and from 4.13× to 8.97× on Power8, respectively. This improvement
is due to the synchronization efficiency of doacross parallelization. Although the possi-
ble dependence patterns of doacross parallelism is subset of the task constructs, the loop-
based point-to-point synchronizations of doacross generally have quite small synchroniza-

4In preprocessing phase, if-statements are moved into the innermost levels so that loops are free from
non-affine control flows.
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tion overhead. By using our framework, programmers can specify ideal task dependences
regardless of the overhead and the framework applies a sequence of transformations and
converts into the efficient doacross implementations when possible.

3.6.3 Rodinia Suite

Rodinia suite is designed for heterogeneous computing and it includes kernels which target
towards multi-core CPUs and GPU platforms [84]. The suite consists of 18 benchmarks
and include diverse applications such as dynamic programming techniques, linear algebra
kernels, graph traversals, structure grid, unstructured grid, etc. In the current evaluation,
we consider eight benchmarks namely Back propagation, CFD Solver, Hotspot, Kmeans,
LU decomposition, Needleman-Wunch, Particle filter, and Pathfinder. The other 10
benchmarks contain C structs, which are not yet supported in the proposed polyhedral
framework. We will address these benchmarks in future work.
Back propagation. This benchmark is a machine-learning algorithm that trains the weights
of connecting nodes on a layered neural network. This benchmark has two functions each
of which contains an OpenMP parallelized doubly nested loops5, which is the source of par-
allelism in this benchmark. However, because of the unrestricted pointer aliasing among
function arguments (2D pointer-to-pointer arrays), this loop parallelism is impossible to de-
tect without sound inter-procedural pointer analysis. Run-time checking for the absence of
aliasing without inter-procedural analysis can be expensive in this benchmark even though
there exist speculative approaches [88] and compiler flags to identify pointer aliases. Al-
ternatively, our framework utilized the happens-before relations derived from parallel loop
constructs; based on the improved dependence information, our framework applied loop
permutation to the kernel loops so that the resulting kernels have better spatial data locality
to enhance cache reuse and vectorization. As can be seen from Figures 3.7, 3.8, and 3.9,
PoPP versions show much better speedup than the OpenMP versions on both systems.
Other benchmarks. As shown in the figures, we also observed performance improve-
ments for Hotspot, LU Decomposition, Needle-Wunch, and Particle filter, by the PoPP

framework. Based on the improved dependence information via happens-before relations,
the PoPP applied loop fusion and/or permutation to improve spatial data locality to these
five benchmarks. Note that Rodinia benchmarks aim at parallelization on accelerators such
as GPUs while the optimization criteria in PolyAST framework are customized for CPU
cache architectures and thereby enabled these transformations. Also, we removed some
print statements as summarized in Table 3.2, which provided more opportunities for trans-
formations. For evaluation of Hotspot and Needle-Wunch, although the OpenMP variants

5For evaluation, we also specified the inner loop’s parallelism.
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reported in Figures 3.7, 3.8, and 3.9 are the original loop parallel versions, we converted
these loop constructs into task depend constructs and passed to PoPP framework. Loop
skewing (only to Hotspot), tiling and doacross parallelization were applied automatically
on these benchmarks by PoPP to enable better data reuse and synchronization efficiency.
No transformations were applied to CFD Solver, Kmeans, and Pathfinder; same perfor-
mance was observed between OpenMP and PoPP. The overall experimental results show
geometric mean performance improvements of 1.62x and 2.75x on the Intel Westmere and
IBM Power8 platforms respectively, relative to the original OpenMP versions.

3.7 Limitations

This section describes the limitations imposed on the current framework and briefly dis-
cusses how we can address such restrictions in the future work.

The algorithmic limitations are as follows:

• Intersection of conservative dependence with happens-before relations is applicable
only in the case of programs that satisfy serial-elision property. This limitation is also
due to the underlying polyhedral representations that support only sequential - i.e.,
total ordered - schedules. In our future work, we will address the parallel constructs
that don’t satisfy serial-elision property, e.g., SPMDized code with explicit OpenMP

threads and barriers, by extending data dependence definition with happens-before
relations for ordering. There is certain amount of related work in this direction [99,
100].

• In this work, we consider only nested tasks all of which are included in the same
lexical scope without recursive calls. On the other hand, the generic OpenMP task
parallel constructs support wider range of parallelism including arbitrary patterns of
dynamic task parallelism. We plan to address recursive task patterns (e.g., observed
in Strassen benchmark in KASTORS suite) by a hybrid approach of polyhedral and
graph-based optimizations, which also have a long history including the Sisal lan-
guage [101].

• In the current framework, we implement the detected doall and doacross parallelism
by the #pragma omp for and #pragma omp for ordered constructs in the code
generation phase. In our future work, we will also support task parallel constructs
including inter-task dependences in the codegen phase and appropriate cost models
to determine which construct of task dependence or doacross is more beneficial in
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the parallelization phase. In general, doacross construct has less synchronization
overhead while task dependence is more robust overload unbalance.

The implementation limitations are as follows:

• In this work, we limit our analysis to support only doall (#pragma omp for) par-
allelism and task parallelism including inter-task dependence (task depend con-
structs). We will extend our framework so that other parallel constructs in OpenMP,
such as sections that do satisfy serial-elision property, can be expressed as happens-
before relations. Once they are converted into HB relations in step 3 of Algorithm 1,
the remaining steps seamlessly reflect such parallelism in the final dependence infor-
mation.

• We extend our approach to handle C structs by encoding the fields of structure onto
separate names and extend dependence analysis accordingly, as with access relations
in ISL library [102].

3.8 Related Work

There is an extensive body of literature on applying polyhedral transformations to non-
affine static program regions. We focus on past contributions that are most closely related
to this work. The comparison between our approach and other related work is discussed
in [26].

PENCIL [103], a platform-neutral compute intermediate language, aimed at facilitating
automatic parallelization and optimization on multi-threaded SIMD hardware for domain
specific languages. The language allows users to supply information about dependences
and memory access patterns to enable better optimizations. PENCIL provides directives
such as independent, reductions to remove data dependences on the loop, but doesn’t have
support for task directives as in our approach. Another key difference from our approach is
that we are interested in general-purpose parallel languages such as OpenMP while PEN-
CIL is focused on supporting DSLs in which certain coding rules are enforced related to
pointer aliasing, recursion, unstructured control flow. There is a similarity in the semantics
of the independent pragma from PENCIL and the parallel for pragma from OpenMP, as
they both indicate no dependences among loop iterations.

Pop and Cohen have presented a preliminary approach to increase optimization oppor-
tunities for parallel programs by extracting the semantics of the parallel annotations [104].
This extracted information is brought into compiler’s intermediate representation and lever-
age existing polyhedral frameworks for optimizations. They envisaged on considering
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streaming OpenMP extensions carrying explicit dependence information, to enhance the
accuracy of data dependence analyses.

A number of works addressed the problem of data-flow analysis of explicitly parallel
programs, including extensions of array data-flow analysis to data-parallel and/or task-
parallel programs [99], and adaptation of array data-flow analysis to the X10 programs
with finish/async parallelism [100]. In these approaches, the happens-before relations are
first analyzed and the data-flow is computed based on the partial order imposed by happen-
before relations. On the other hand, our approach first overestimates dependences based on
the sequential order and intersect the happen-before relations with the conservative depen-
dences. The main focus of our work is on transformations of explicitly parallel programs
for improved performance, whereas the work in [99] and [100] is only focused on analysis.

There has also been work done in partitioned global address space languages such as
Co-Array FORTRAN (CAF) and Unified Parallel C (UPC), where certain compiler opti-
mizations have been enabled by introducing language extensions and new synchronization
constructs [105]. There has been significant effort to handle certain subsets of non-affine
accesses, including delinearization techniques [89] for linearized subscripts, polynomial
accesses [106] in the polyhedral model for dependence analysis and loop transformations.

Recent works in [107, 108] are inspired from our work on leveraging “serial-elision”
property and happens-before relations to improve dependence analysis. For instance, Nick-
las et al. [108] improved loop dependence analysis for enhancing auto-vectorization capa-
bilities of GCC 6.1 compiler by utilizing work-sharing loop constructs in OpenMP pro-
gramming model. In addition, Tao et al. in their Tapir framework [107] exploited the
serial-elision property to enable classical scalar optimizations - including loop-invariant-
code motion, common sub-expression elimination, and tail-recursion elimination – for
Cilk/OpenMP parallel programs.

3.9 Summary

This work is motivated by the observation that software with explicit parallelism is on the
rise. This explicit parallelism can be used to enable larger set of polyhedral transforma-
tions by mitigating conservative dependences, compared to what might have been possible
if the input program had been sequential. We introduced an approach that reduces spu-
rious dependences from the conservative dependence analysis by intersecting them with
the happens-before relations from parallel constructs. The final set of the dependences can
then be passed on to a polyhedral transformation tool, such as PLuTo or PolyAST, to enable
transformations of explicitly parallel programs.
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We evaluated our approach using OpenMP benchmark programs from the KASTORS
and the Rodinia benchmark suites. The approach reduced spurious dependences from the
conservative analysis of these benchmarks and the resulting dependence information broad-
ened the range of legal transformations in the polyhedral optimization phase. Overall, our
experimental results show geometric mean performance improvements of 1.62x and 2.75x
on the 12-core Intel Westmere and 24-core IBM Power8 platforms respectively, relative to
the original OpenMP versions. The main focus of our future work will be to address the
limitations summarized in Section 3.7.

In the next chapter (Chapter 4), we focus on eliminating dependence cycles arising from
memory-based dependences such as anti-, and output-dependences to enable more freedom
for optimizers to perform larger set of transformations such as enabling vectorization.
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CHAPTER 4
POLYSIMD: A UNIFIED APPROACH TO VARIABLE RENAMING FOR

ENHANCED VECTORIZATION

4.1 Abstract

Despite the fact that compiler technologies for automatic vectorization have been under
development for over four decades, there are still considerable gaps in the capabilities of
modern compilers to perform automatic vectorization for SIMD units. One such gap can
be found in the handling of loops with dependence cycles that involve memory-based anti
(write-after-read) and output (write-after-write) dependences. Past approaches, such as
variable renaming and variable expansion, break such dependence cycles by either elim-
inating or repositioning the problematic memory-based dependences. However, the past
work suffers from three key limitations: 1) Lack of a unified framework that synergistically
integrates multiple storage transformations, 2) Lack of support for bounding the additional
space required to break memory-based dependences, and 3) Lack of support for integrating
these storage transformations with other code transformations (e.g., statement reordering)
to enable vectorization.

In this work, we address the three limitations above by integrating both Source Vari-
able Renaming (SoVR) and Sink Variable Renaming (SiVR) transformations into a unified
formulation, and by formalizing the “cycle-breaking” problem as a minimum weighted
set cover optimization problem. To the best of our knowledge, our work [28] is the first to
formalize an optimal solution (reflecting best execution time) for cycle breaking that simul-
taneously considers both SoVR and SiVR transformations, thereby enhancing vectorization
and reducing storage expansion relative to performing the transformations independently.
We implemented our approach in PPCG, a state-of-the-art optimization framework for loop
transformations, and evaluated it on eleven kernels from the TSVC benchmark suite. Our
experimental results show a geometric mean performance improvement of 4.61× on an In-
tel Xeon Phi (KNL) machine relative to the optimized performance obtained by Intel’s ICC
v17.0 product compiler. Further, our results demonstrate a geometric mean performance
improvement of 1.08× and 1.14× on the Intel Xeon Phi (KNL) and Nvidia Tesla V100
(Volta) platforms relative to past work that only performs the SiVR transformation [29],
and of 1.57× and 1.22× on both platforms relative to past work on using both SiVR and
SoVR transformations [30].
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4.2 Introduction

There is a strong resurgence of interest in vector processing due to the significant energy
efficiency benefits of using SIMD parallelism within individual CPU cores as well as in
streaming multiprocessors in GPUs. These benefits increase with widening SIMD vectors,
reaching vector register lengths of 512 bits in the Intel Xeon Phi Knights Landing (KNL)
processor, Intel Xeon Skylake processor and 2048 bits in the scalable vector extension of
the Armv8 architecture [109]. Further, there is a widespread expectation that compilers
will continue to play a central role in handling the complexities of dependence analysis,
code transformation and code generation necessary for vectorization for CPUs. Even in
cases where the programmer identifies a loop as being vectorizable, the compiler still plays
a major role in transforming the code to use SIMD instructions. This is in contrast with
multicore and distributed-memory parallelism (and even with GPU parallelism in many
cases), where it is generally accepted that programmers manually perform the code trans-
formations necessary to expose parallelism, with some assistance from the runtime system
but little or no help from compilers. It is therefore important to continue advancing the
state of the art of vectorizing compiler technologies, so as to address the growing needs for
enabling modern applications to use the full capability of SIMD units.

This work focuses on advancing the state of the art with respect to handling memory-

based anti (write-after-read) or output (write-after-write) dependences in vectorizing com-
pilers. These dependences can theoretically be eliminated by allocating new storage to
accommodate the value of the first write operation thereby ensuring that the following
write operation need not wait for the first write to complete. However, current state-of-the-
art vectorizing compilers only perform such storage transformations in limited cases, and
often fail to vectorize loops containing cycles of dependences that include memory-based
dependences. This is despite a vast body of past research on storage transformations, such
as variable renaming [55, 110, 111, 112] and variable expansion [113], which have shown
how removing storage-related dependences can make it possible to “break” dependence
cycles.

We believe that the limited use of such techniques in modern compilers is due to three
key limitations that currently inhibit their practical usage:

1. Lack of a unified framework that synergistically integrates multiple storage transfor-
mations,

2. Lack of support for bounding the additional space required to break memory-based
dependences, and
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3. Lack of support for integrating these storage transformations with other code trans-
formations (e.g., statement reordering) to enable vectorization.

The goal of this work is to enhance the current state-of-the-art in vectorizing compil-
ers to enable more loops to be vectorized via systematic storage transformations (variable
renaming) that remove selected memory-based dependences to break their containing cy-
cles, while optionally using a bounded amount of additional space. We view our tool,
called PolySIMD, as an extension to vectorization technologies that can be invoked when
a state-of-the-art vectorizer fails to vectorize a loop. Thus, we do not focus on replicat-
ing all state-of-the-art vectorization capabilities in PolySIMD. For example, we focus on
enabling vectorization of innermost loops in PolySIMD, though many state-of-the-art com-
pilers support outer loop vectorization as well (and we believe that our contributions can
also be applied to outer loop vectorization). By default, our tool takes sequential code as in-
put, and focuses on identifying the best use of variable renaming to maximize opportunities
for vectorization. An input loop can optionally be annotated with a pragma that specifies
a bound (spacelimit) on the maximum amount of extra storage that can be allocated to
break dependences. As discussed later, the two main variable renaming transformations
that we employ in our approach are Source Variable Renaming (SoVR) and Sink Variable

Renaming (SiVR).
The main technical contributions of this work are as follows:

• We formalize the problem of identifying an optimized set of SoVR and SiVR variable
renaming transformations to break cycles of dependences as a minimum weighted set
cover optimization problem, and demonstrate that it is practical to use ILP formula-
tions to find optimal solutions to this problem. If the user provides an optional space-

limit parameter, our formalization ensures that the additional storage introduced by
our transformations remains within the user-provided bounds.

• We created a new tool, PolySIMD, to implement our approach by selecting and per-
forming an optimal set of SoVR and SiVR transformations, along with supporting
statement reordering transformations. Given an input sequential loop, PolySIMD ei-
ther generates transformed sequential CPU code that can be input into a vectorizing
compiler like ICC or generates GPU code (CUDA kernels) that can be processed by
a GPU compiler like NVCC. PolySIMD is implemented as a extension to the PPCG
framework [114, 115], so as to leverage PPCG’s dependence analysis and code gen-
eration capabilities.

• We evaluated our approach on eleven kernels from the TSVC benchmark suite [116],
and obtained a geometric-mean performance improvement of 4.61× on an Intel Xeon
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Phi (KNL) machine relative to the optimized performance obtained by Intel’s ICC
v17.0 product compiler.

• We also compared our approach with the two most closely related algorithms from
past work, one by Calland et al. [29] that only performed SiVR transformations, and
the other by Chu et al. [30]. that proposed a (not necessarily optimal) heuristic to
combine SiVR and SoVR transformations.

Relative to Calland et al’s approach, our approach delivered an overall geometric-
mean performance improvement of 1.08× and 1.14× on the Intel KNL and Nvidia
Volta platforms respectively, though our approach selected exactly the same (SiVR-
only) transformations for six of the eleven benchmarks. Relative to Chu et al’s ap-
proach, our approach delivered an overall geometric-mean performance improve-
ment of 1.57× and 1.22× on the Intel KNL and Nvidia Volta platforms respectively.

Figure 4.1: An example to illustrate SoVR and SiVR transformations.

4.3 Discussion on Variable Renaming Transformations

In this section, we discuss on two variable renaming transformations that are considered
in this work, and they are Source variable renaming (SoVR) 1 introduced by Kuck et al.
in [55] and Sink variable renaming (SiVR) introduced by Chu et al. in [111]. Further-
more, these two renaming transformations were formalized by Calland et al. in [29], and

1SoVR was also referred as node splitting by Kuck et al. in [55].

48



referred SoVR and SiVR as T1 and T2 transformations respectively. Note that these trans-
formations reposition memory-based dependences to break cycles but do not eliminate the
dependences unlike variable expansion techniques [113] and Array SSA [112].

4.3.1 Source Variable Renaming (SoVR)

Source variable renaming transformation is introduced to handle anti-dependences in cy-
cles of memory-based dependences, and the transformation is applied on a read access of
a statement to reposition an outgoing anti-dependence edge from the read access [55]. Ap-
plying SoVR on a read access (say r) of a statement introduces a new assignment statement
that copies the value of r into a temporary variable (say k), and then the original statement’s
read access is replaced with k. Since the transformation is renaming source (read access)
of an anti-dependence, we call this transformation as a source variable renaming transfor-
mation.

Example. Applying SoVR on the read access a[i+1] of the statement s2 in the original
program (shown in Figure 4.1) introduces a new assignment statement s21 copying the
value of a[i+1] into a temporary variable k, and then the statement s2 refers to k in-place
of a[i+1]. As a result, the source of the anti-dependence from the read access a[i+1]
is repositioned to s21. This reposition helps in breaking one of the cycles through s2,
i.e., the cycle involving a flow-dependence from a[i] of s1 to a[i-1] of s2, and an anti-
dependence from a[i+1] of s2 to a[i] of s1.

Usefulness. Since SoVR transformation is applied on a read access of a statement, the
transformation can modify only incoming flow- and outgoing anti-dependences related to
that read access. Hence, applying a SoVR transformation on a statement is useful in break-
ing cycles if the statement has an incoming anti- or output-dependences and an outgoing
anti-dependence [29]. Also, SoVR transformation can be useful if the statement’s incoming
flow-dependence and outgoing anti-dependence are on different accesses.

Space requirements & Additional memory traffic. The temporary variable introduced
as part of a SoVR transformation is private to a loop carrying an anti-dependence that we
are interested in repositioning. Hence, SoVR requires an additional space equivalent to the
length of vector registers (i.e., VLEN) of target hardware. Furthermore, the transformation
additionally introduces only one scalar load and one scalar store per every iteration of the
target loop.
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4.3.2 Sink Variable Renaming (SiVR)

Sink variable renaming transformation is introduced to handle both anti- and output-dependences
in cycles of memory-based dependences [111]. The transformation is applied on a write
access of a statement to reposition an outgoing flow-dependence from the write access and
also an outgoing anti-dependence from the statement. Applying SiVR on a write access
(say w) of a statement s introduces a new assignment statement that evaluates the right-
hand side of the statement into a temporary array (say temp), and then any references to
the value of w are replaced by accessing the temp. Since SiVR transformation is applied
on a write access of a statement, the transformation can modify only incoming anti- or
output-dependences related to that write access. As a result, applying SiVR transforma-
tion is useful in breaking cycles if the statement has either an incoming anti- or output-
dependences and either an outgoing flow- or anti-dependences [29]. Since the transforma-
tion is renaming the sink (the write access) of an incoming anti- or output-dependence, this
transformation is called as sink variable renaming transformation [111].

Example. Applying SiVR on the write access a[i] of the statement s1 in the original
program (shown in Figure 4.1) introduces a new assignment statement s11 that evaluates
the rhs of s1 into a temporary array a temp, and then the transformation replaces the
references to a[i] (such as a[i-1]) with the a temp. As a result, the source of the flow-
dependence from the write access a[i] is repositioned to s11. This repositioning helps
in breaking all of the cycles present in the original program including the one that is not
broken by the previous SoVR transformation, i.e., the cycle involving a flow-dependence
from a[i] of s1 to a[i-1] of s2, and an output-dependence from a[i+1] of s2 to a[i] of
s1.

Usefulness. Applying a SiVR transformation is useful in breaking cycles if the state-
ment has either an incoming anti- or output-dependences, and either an outgoing flow- or
anti-dependences [29].

Space requirements. The temporary array introduced as part of a SiVR transformation is
not private to a loop unlike SoVR transformation, because references to the newly allocated
storage can be across iterations. Hence, SiVR requires an additional space equivalent to
the number of iterations of a loop. However, the additional storage can be reduced by strip
mining the loop, and vectorizing only the strip [117]; whose space requirement is now
proportional to the strip size, and the strip can be as minimal as vector length.

Additional memory traffic. SiVR transformation introduces pointer-based loads and
stores, unlike the SoVR transformation which introduces only scalar loads and stores.
The new assignment statement as part of a SiVR transformation introduces one additional
pointer-based store and one pointer-based load per one iteration of the loop. Along with
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a new assignment statement, each reference to the newly allocated storage introduces one
additional pointer-based load, leading to overall (1+#references) of pointer-based loads per
one iteration of the loop. In this work, we focus on applying renaming transformations
for vectorizing only inner-most loops, and this focus helps in conservatively counting the
references to the newly allocated storage by traversing the loop body and ignoring condi-
tionals.

4.3.3 Synergy between SoVR and SiVR

In general, SoVR transformation is neater in code generation and performs more efficiently
than SiVR since the SoVR transformation introduces scalar loads and stores. But, SoVR
transformation has limited applicability (i.e., handling only anti-dependences) in break-
ing cycles compared to SiVR, which has broader applicability through breaking output-
dependences. Furthermore, the SiVR transformation can reposition several distinct anti-
dependences if all of those anti-dependences share a common sink variable, unlike SoVR
transformation which needs to be applied on each anti-dependence edge. Table 4.1 shows
a comparison between SoVR and SiVR transformations related to space requirements and
additional stores and loads.

Table 4.1: A comparison between SoVR and SiVR transformations related to the space requirements
and additional stores, loads introduced by these transformations in one iteration of the target loop.
* – Additional scalar loads/stores for SiVR transformation may go negative in case of renaming
scalars.

SoVR SiVR
Storage #Additional space Vector length Loop length

Additional
loads &
stores

#scalar loads 1 0*
#scalar stores 1 0*
#pointer-based loads 0 1+#references
#pointer-based stores 0 1

4.4 Motivating Example

To motivate the need of a unified framework that synergistically integrates multiple variable
renaming transformations, we consider a running example (shown in Figure 4.2) from [29]
whose dependence graph consists of three cycles (i.e., s1-s3-s2-s4-s1, s1-s3-s4-s1, and
s1-s2-s4-s1) which prohibit vectorization. Past work by Calland et al. [29] uses only SiVR
transformations to eliminate all of the above three cycles by applying SiVR transformations
on the statements s2 and s3. But these transformations require an additional space close to
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Figure 4.2: A running example from [29] whose dependence graph consists of three cycles c1/c2/c3:
s1-s3-s2-s4-s1/s1-s3-s4-s1/s1-s2-s4-s1 which prohibit vectorization. The table also lists dependence
graphs and transformed codes after applying past approach [29] and our integrated approach on the
original program.

2 times the number of iterations of the loop-i, i.e., a total of (2 × T ), and also introduce
additional 2 pointer-based stores and 4 pointer-based loads per one iteration of the loop.

However, instead of applying SiVR transformation on the statement s2 to break the
cycle (c3), SoVR transformation can be applied on the s1 to break the same cycle (c3).
This results in lesser additional space (T + VLEN), and also introduces lesser additional 1
pointer-based store and 2 pointer-based loads per one iteration of the loop. Our approach
identifies such optimal transformations from a set of valid SoVR and SiVR transformations
by formalizing the “cycle-breaking” problem as a minimum weighted set cover optimiza-
tion problem with a goal of reducing overhead arising from additional loads and stores
introduced by these transformations. The speedup’s after applying our approach over the
original program is 5.06× and 4.02× compared to the original program and the transformed
program after applying the Calland et al. approach [29] respectively on the Intel Knights
Landing processor (More details about the architectures and compiler options can be found
in Table 4.3).
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Figure 4.3: Workflow of PolySIMD implemented as an extension to the PPCG [114].

4.5 Our Unified Approach to Variable Renaming

In this section, we introduce our approach that synergistically integrates SoVR and SiVR
transformations into a unified formulation to break cycles of dependences involving memory-
based dependences, and the approach is implemented in a tool called PolySIMD.

The overall approach is summarized in Figure 4.3, which is implemented as an ex-
tension to the PPCG framework [114] (a state-of-the-art optimization framework for loop
transformations), and consists of the following components: 1) Dependence cycles finder
(Extracting flow-, anti-, and output-dependences on a target loop, then constructing a de-
pendence graph, and then finding cycles in the graph using the Johnson’s algorithm [118]),
2) Bipartite graph constructor (Building a bipartite mapping from a union over useful SoVR
and SiVR transformations to the breakable cycles, in such a way that there is an edge be-
tween them if the transformation can break the cycle), 3) Solver (Reducing the problem of
breaking cycles as a weighted set covering optimization problem and finding an optimal
solution using the ILP solver of ISL framework [119]), 4) Transformer (Applying SoVR
and SiVR transformation from the optimal solution to break cycles).

4.5.1 Dependence Cycles Finder

This component takes the polyhedral intermediate representation (also referred to as SCoP)
extracted from a target loop as an input. Then, the loop-carried and loop-independent flow-,
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Table 4.2: Bipartite graph constructed on the dependence graph of the original program in Fig-
ure 4.2.

Transformations (T) Cycles (C)
t1 = SoVR(s1, b[2i+2]) c3

t2 = SiVR(s2, b[2i]) c3
t3 = SiVR(s3, a[i]) c1, c2

t4 = SoVR(s3, c[i+5]) c2
t5 = SiVR(s4, c[i]) c2

anti-, and output-dependences (including both data and control dependences) of the target
loop are computed using the PPCG dependence analyzer. Afterwards, these dependences
are represented as a directed graph, where a node denotes a statement, and an edge denotes
a dependence between two statements. Also, each edge of a directed graph is annotated
with a dependence type: flow-, anti-, or output-. Now, PolySIMD computes all strongly
connected components (SCC’s) of the directed graph using the Tarjan’s algorithm [120].
Then, all elementary cycles 2 for every SCC of the dependence graph are identified using
the Johnson’s algorithm [118], an efficient algorithm to enumerate all elementary cycles
of a directed graph. The worst case time complexity of the algorithm is O((n + e)(c + 1))
where n is the number of vertices, e is the number of edges and c is the number of distinct
elementary cycles in a directed graph. For example, applying Johnson’s algorithm on a
dependence graph of the running example (shown in Figure 4.2 and has only one SCC)
results in three elementary cycles c1/c2/c3: s1-s3-s2-s4-s1/s1-s3-s4-s1/s1-s2-s4-s1 on the
loop-i.

Note that SoVR and SiVR transformation cannot break a cycle if the cycle is either a
pure flow- or pure output-dependence cycle [29]. Since our approach considers only SoVR
and SiVR into the formulation, if PolySIMD encounters any dependence cycle involving
pure flow- or pure output-dependences in a SCC, then the tool ignores the SCC and contin-
ues with the rest of SCC’s. If each SCC have either a pure flow- or pure output-dependence
cycle, then PolySIMD will skip rest of steps in our approach, otherwise the tool continues
with next steps. Since the three cycles c1, c2, and c3 of the running example are neither
pure-flow nor pure-output dependence cycles, our approach proceeds to the next step.
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4.5.2 Bipartite Graph Constructor

This component constructs a bipartite graph between a union of useful SoVR and SiVR
transformations (see Section 4.3 for usefulness criteria) and breakable cycles of the depen-
dence graph such that there is an edge between them if applying the transformation can
break the cycle. As from the usefulness criteria, Table 4.2 shows a tabular version of the
bipartite graph constructed for the running example.

4.5.3 Solver

After constructing the bipartite graph, the problem of finding an optimal set of transforma-
tions for cycle breaking is reduced to a minimum weighted set cover optimization problem
(C,T,W) where C refers to a collection of cycles, T refers to a set of useful SoVR and
SiVR transformations, and W refers to a set of weights for each transformation. The goal
of the optimization problem is to identify the minimum weighted sub-collection of T whose
union covers all cycles in C, and the optimization problem is known to be NP-hard. Hence,
we formulate the minimum weighted set covering problem as the following integer linear
programming (ILP) in our tool-chain.

Variables:

• A variable ti for each transformation of T

ti ∈ {0, 1}, ∀ ti ∈ T

where ti = 1 indicates that the transformation ti should be applied on the original
program, otherwise it should be ignored.

• A weight parameter wi for each transformation ti to indicate an additional execution
overhead (ignoring cache effects), and is measured using the additional loads and
stores introduced by the transformation per one iteration of the target loop (See Ta-
ble 4.1 for more details).

• A latencyratio parameter to indicate the ratio of access times of main memory to
registers, and this parameter is used in converting weight parameters of SiVR trans-
formations (introduced pointer-based loads/stores) into same units as of weight pa-
rameters of SoVR transformations (introduces scalar-based loads/stores).

2An elementary cycle of a directed graph is a path in which no vertex appears twice except the first and
last vertices. Since elementary cycles form a basis for enumerating all cycles in a directed graph, breaking all
of them results in an acyclic graph.

55



Acyclicity constraint: The acyclic constraint on the dependence graph is modeled into a
condition that each cycle of C should be covered by at-least one transformation of T .

∀ c j in C,
( ∑

∀ ti in T
such that ti can break c j

ti

)
≥ 1

Objective function: Our approach targets at minimizing additional overhead introduced
by the optimal set of transformations.

Minimize
( ∑
∀ ti in T

wi × ti

)

The ILP formulation for the example is as follows (Assuming latencyratio as 50).

T = {t1, t2, t3, t4, t5}, C = {c1, c2, c3}, ti ∈ {0, 1}, ∀ ti ∈ T,

w1 = w4 = 2, w2 = w3 = w5 = 50 × 3 = 150,

t3 ≥ 1, t3 + t4 + t5 ≥ 1, t1 + t2 ≥ 1,

Minimize
(
2 × (t1 + t4) + 150 × (t2 + t3 + t5)

)
The optimal solution obtained for the above formulation is (t1=1, t2=0, t3=1, t4=0,

and t5=0), i.e., applying SoVR on s2 and SiVR on s3 can break all cycles present in
the running example with minimal additional overhead introduced. Note that the above
solution is different to the solution (t2 = 1, t3 = 1) from the Calland et al’s approach in [29]
since our approach considers both SoVR and SiVR transformations into the formulation,
unlike the Calland et al’s approach which includes only SiVR transformations.

Heuristics. There can be simple heuristics such as applying SoVR transformation in the
beginning to break as many cycles it can and followed by applying SiVR transformation to
break rest of cycles, which can lead to the similar performance improvements compared to
our approach. The solution from such heuristics may include redundant SoVR transforma-
tions, which can be observed on the running example. Applying transformation t4 (SoVR)
on the running example (ahead of SiVR transformations) to break the cycle c2 is redundant
because the transformation t3 (SiVR) will eventually break the cycle c2 and also can break
cycle c1 that cannot be broken by any SoVR transformation.

There can exists other heuristics or greedy algorithms to the minimum weighted set
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cover optimization problem. But, we believe that an ILP formulation formalizes the op-
timization problem without being tied to specific heuristics, which in turn reduces perfor-
mance anomalies that can occur in optimization heuristics; Also, the compile-times for
the results in this experimental evaluation are less than half a second (see Table 4.4 for
more details). We also believe that our framework can be easily extended to include other
heuristics or greedy algorithms to the optimization problem.

4.5.4 Transformer

This component applies the optimal set of transformations obtained from the solver onto
the intermediate polyhedral representation of the target loop. It is also mentioned in [29]
that the order of applying SoVR and SiVR transformations doesn’t have any effect on
the final program. Hence, PolySIMD first applies SoVR transformations from the optimal
solution, and then followed by SiVR transformations from rest of the optimal solution. The
generation of new assignment statements, modifying schedules of statements, and updating
the references as part of the code transformations are implemented using the dependence
analyzer and schedule trees of the PPCG framework.

After applying all transformations from the optimal solution, PolySIMD feeds the trans-
formed intermediate polyhedral representation to the PPCG optimization engine to perform
statement reordering based on the topological sorting of the transformed dependence graph.
Note that all of the benchmarks in the experimental evaluation required statement reorder-
ing transformation to be performed without which the Intel’s ICC v17.0 product compiler
couldn’t vectorize. This demonstrates the necessity of coupling storage optimizations with
the loop optimization framework. Finally, PolySIMD leverages code generation capabili-
ties of the PPCG framework to generate transformed sequential CPU code that can be input
into a vectorizing compiler like ICC or generates GPU code (CUDA kernels) that can be
processed by a GPU compiler like NVCC.

4.5.5 Bounding Additional Space

We believe that one of the major key limitations in the unavailability of variable renaming
techniques (especially on arrays) in modern compilers is due to the lack of support for
bounding the additional space required to break memory-based dependences. Hence, we
provide a clause (i.e., spacelimit) to the directive “#pragma vectorize” that can help
programmers to limit the additional space to enable enhanced vectorization of inner-most
loops, and the spacelimit is expressed in multiples of vector registers length. The clause
spacelimit essentially helps our approach to compute strip size that can be vectorized, and
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the formula to compute the strip size (in multiples of vector length) is as follows.

strip size =

⌊
spacelimit × VLEN − |TS oVR| × VLEN

|TS iVR| × VLEN

⌋
=

⌊
spacelimit − |TS oVR|

|TS iVR|

⌋
where |TS oVR| and |TS iVR| refer to number of SoVR and SiVR transformations in the

optimal solution respectively. If the strip size value is non-positive for a given spacelimit,
then our approach ignores applying renaming transformations. Otherwise, our approach
does strip mining of the target loop before applying any of the renaming transformations
from the optimal solution.

4.6 Performance Evaluation

In this section, we present an evaluation of our PolySIMD tool relative to Intel’s ICC v17.0
product compiler and to the two algorithms presented in past work [29, 30] for performing
SiVR and SoVR transformations to break cycles of a dependence graph. We begin with
an overview of the experimental setup and the benchmark suite used in our evaluation, and
then present experimental results for the three different comparisons.

4.6.1 Experimental Platforms

Our evaluation uses the following two SIMD architectures. 1) A many-core Intel Xeon
Phi Knights Landing (KNL) processor with two 512-bit vector processing units (VPU) per
core. Thus, each 512-bit VPU can perform SIMD operations on 16 single-precision floating
point values, i.e., the VPU has an effective vector length of 16 (for 32-bit operands). Since
we are evaluating vectorization for single-threaded benchmarks, we only use one core of
the KNL processor in our evaluation, though our approach can be applied to multithreaded
applications as well. 2) A Nvidia Volta accelerator (Tesla V100) with 80 symmetric multi-
processors (SMs), each of which can multiplex one or more thread blocks. A thread block
can contain a maximum of 1024 threads, which are decomposed into 32-thread warps for
execution on the SM. Thus, each SM can be viewed as being analogous to a VPU with an
effective vector length of 32 (for 32-bit operands). For consistency with our KNL results,
we only generate one block of 1024 threads per benchmark, thereby only using one SM
in the GPU. However, our approach can be applied to multi-SM executions as well. Ta-
ble 4.3 lists the system specifications and the compiler options used in our evaluations. The
comparison with ICC could only be performed on KNL, since ICC does not generate code
for Nvidia GPUs. The comparison with the two algorithms from past work [29, 30] were
performed on both platforms.
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Table 4.3: Summary of SIMD architectures and compiler flags used in our experiments. SP refers
to Single Precision floating point operands, VPU refers to a KNL Vector Processing Unit, and SM
refers to a GPU Streaming Multiprocessor.

Intel Xeon Phi Nvidia Volta
Microarch Knights Landing Tesla V100

SIMD lanes 16 SP per VPU (2 VPU’s per core) 32 SP per SM
Compiler Intel ICC v17.0 Nvidia NVCC v9.1

Compiler flags -O3 -xmic-avx512 -O3 -arch=sm 70 -ccbin=icc

4.6.2 Benchmarks

We use the Test Suite for Vectorizing Compilers (TSVC) benchmark suite in our evalua-
tion, originally developed in FORTRAN to assess the vectorization capabilities of compil-
ers [121]. Later, the benchmark suite was translated into C with additional benchmarks to
address limitations in the original suite [116], so we used this C version for our evaluations.
A detailed study of these benchmarks, along with the vectorization capabilities of multiple
compilers can be found in [116, 122]. Since our goal is to evaluate the effectiveness of
renaming variables on breaking dependence cycles that inhibit vectorization, we restrict
our attention to TSVC benchmarks that contain multi-statement dependence cycles con-
taining at least one anti/output dependence and that cannot be broken by scalar privatiza-
tion. Further, since PolySIMD is based on a polyhedral optimization framework, we further
restricted our attention to the subset of these benchmarks that do not contain non-affine ex-
pressions that prevent polyhedral analysis3. This selection resulted in 11 benchmarks from
the TSVC suite that will be the focus of our evaluation, and are summarized in Table 4.4.

Figure 4.4: Speedups using PolySIMD on the eleven benchmarks from the TSVC suite, compiled
using the Intel’s ICC v17.0 product compiler and running on a single core of Intel Knights Landing
processor.

3This constraint arises from the implementation of our algorithm in PolySIMD; our algorithm can be
applied in a non-polyhedral compiler setting as well.
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Table 4.4: Summary of the 11 benchmarks from the TSVC suite used in our evaluation, including
the number of statements, number of dependences, and number of elementary cycles per benchmark
(excluding self-loop cycles). The benchmarks were executed using N = 225 and T = 200 as input
parameters. Number of SiVR and SoVR transformations performed by PolySIMD for the 11 bench-
marks, and also the overall compilation times required. Coincidentally, none of these benchmarks
triggered a case in which both SiVR and SoVR transformations had to be performed.

Benchmark #Stmts #Deps #Elementary
cycles

Our ILP Solution Compilation time (sec)
#SoVR’s #SiVR’s PolySIMD Total

s116 5 5 1 1 0 0.08 0.10
s1244 2 2 1 1 0 0.01 0.02
s241 2 3 1 1 0 0.01 0.03
s243 3 6 2 1 0 0.02 0.04
s244 3 4 1 1 0 0.02 0.03

s2251 3 4 1 0 1 0.02 0.03
s252 3 5 2 0 2 0.02 0.04
s254 2 2 1 0 1 0.01 0.02
s255 3 6 3 0 2 0.02 0.04
s257 2 3 1 0 1 0.02 0.04
s261 4 9 3 0 2 0.02 0.04

4.6.3 Comparison with ICC

As discussed in Figure 4.3, PolySIMD takes a sequential program as input, and generates
sequential code as output with selected variable renamings and statement reorderings that
enable enhanced vectorization. Figure 4.4 shows the speedups obtained by using PolySIMD

as a preprocessor to Intel’s ICC v17.0 product compiler on the KNL platform. The speedup
represents the ratio of the execution time of the original program compiled with ICC to
the execution time of the transformed program compiled with ICC, using the compiler
options in Table 4.3 in both cases. As can be seen in Figure 4.4, the use of PolySIMD

as a preprocessor results in significant performance improvements for the 11 kernels. The
transformations performed by PolySIMD are summarized in Table 4.4; the fact that no
benchmark required both SiVR and SoVR transformations is a pure coincidence. We now
discuss the two groups of benchmarks for which PolySIMD applied the SoVR and SiVR
transformations respectively.

Source Variable Renaming (SoVR): The benchmarks s116, s1244, s241, s243,
s244 in the first five entries of Table 4.4 contain multi-statement recurrences involving
outgoing anti-dependences. Hence, PolySIMD applied the SoVR transformation on these
benchmarks to reposition these outgoing anti-dependence edges to break the cycles, as dic-
tated by the column titled SoVR under ILP solution of Table 4.4. There are a few interesting
observations that can be made from the results in Table 4.4 for these five benchmarks:

• The SoVR transformation enabled vectorization for all five benchmarks (as con-
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firmed by the compiler log output), and resulted in speedups varying from 1.12×
to 21.02× on Intel KNL relative to the original program using the Intel’s ICC v17.0
product compiler.

• The s1244 benchmark involves dead-write statements (i.e., there are no reads of a
write before another statement writing to the same location) whose removal eliminate
dependence cycles. Currently, PolySIMD doesn’t check for dead-write statements
unlike the Intel compiler (with O3 optimization flag enabled) which remove the dead
writes to enable the vectorization. As a result, there is a lower speedup with our
approach compared to the Intel compiler.

• The reason for less speedup in case of the s116 benchmark is the generation of
non-unit (unaligned) strided loads and stores leading to inefficient vectorization (as
confirmed by the compiler log output describing the estimated potential speedup as
1.36×).

• All these five benchmarks required statement reordering to be performed after the
SoVR transformations, without which the Intel’s compiler wasn’t able to vectorize.
This indicates the necessity of loop transformations framework to output the final
code that can be vectorizable by the existing compilers.

Sink Variable Renaming (SiVR): The column titled SiVR under ILP solution indicates
that the SiVR transformation should be performed on the remaining benchmarks (s2251,
s252, s254, s255, s257, s261) in Table 4.4. These benchmarks have dependence
cycles involving anti- and output-dependences, and hence our approach chose only the
SiVR transformations to break these dependence cycles. As with the earlier five bench-
marks, there are a few interesting observations that can be made from the results in Ta-
ble 4.4 for these later three benchmarks:

• The SiVR transformation enabled vectorization for all the remaining six benchmarks,
and resulted in speedups varying from 2.02× to 10.77× on the Intel KNL platform
relative to the original program. The compiler log output shows that vectorization
was indeed performed in all cases.

• The benchmarks s252, s254, s255, s257 have loop-carried flow-dependence and
loop-independent anti-dependences on scalars, and resolving these dependences on
scalars using our approach introduced higher overhead from temporary arrays pointer-
based loads and stores. As a result, the performance improvements in these bench-
marks are relatively low.
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• As seen with earlier five benchmarks benefited by the SoVR transformation along
with the statement reordering, these six benchmarks also required statement reorder-
ing to be performed after the SiVR transformations, without which the Intel’s com-
piler wasn’t able to vectorize.

4.6.4 Comparison with Calland et al’s approach

The heuristics proposed by Calland et al. [29] aim to find the minimum number of SiVR
transformations to break all dependence cycles involving memory-based dependences. As
a result, the heuristics choose only SiVR transformations for vectorizing all the eleven
benchmarks. However, our approach chooses to perform SoVR transformations on five
of the eleven benchmarks (s116, s1244, s241, s243, s244), since SoVR incurs less
overhead than SiVR. Hence, we observe speedups (shown in Table 4.5) with our approach
relative to Calland’s approach, varying from 1.07× to 1.24× on the Intel KNL platform and
1.12× to 1.57× on the NVIDIA Volta. For the remaining six benchmarks, our approach
chose exactly the same set of SiVR transformations as did their approach, and hence there
is no performance improvement in these cases. The overall geometric-mean speedups on
all of the eleven benchmarks are 1.08× and 1.14× relative to their approach on the KNL
and Volta platforms.

Table 4.5: Speedups on the Intel KNL processor and NVIDIA Volta accelerator using PolySIMD on
seven benchmarks from the eleven benchmarks relative to past approaches, i.e., Calland et al. [29]
and Chu et al. [30]. We excluded the remaining four benchmarks from the table since our results
were similar to both of the past works.

Bench
-mark

Intel KNL NVIDIA Volta
Calland et al.

approach
Chu et al.
approach

Calland et al .
approach

Chu et al.
approach

s116 1.20x 1.03x 1.29x 1.27x
s1244 1.10x 4.03x 1.57x 1.51x
s241 1.07x 1.49x 1.31x 1.70x
s243 1.27x 1.59x 1.47x 1.61x
s244 1.24x 1.22x 1.12x 1.32x
s257 1.00x 9.74x 1.00x 1.08x
s261 1.00x 1.20x 1.00x 1.19x

4.6.5 Comparison with Chu et al’s approach

Chu et al. proposed an algorithm for resolving general multi-statement recurrences which
considers both SoVR and SiVR transformation [30]. The solution obtained by their al-
gorithm depends on a traversal of the dependence graph, and may not be optimal in gen-
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eral. Further, their algorithm may include redundant SiVR transformations, which were ob-
served when applying their algorithm to benchmarks s241, s243, s257 and 261, leading
to lower performance compared to our approach. We observed performance improvements
on these benchmarks with our approach (relative to Chu et al), varying from 1.20× to 9.74×
on KNL and 1.08× to 1.70× on Volta. For the remaining three benchmarks s116, s1244
and s244 in Table 4.5, our approach chose the same solution as their approach, but we
still obtained better performance because PolySIMD generates private scalars for SoVR
transformations, unlike their algorithm which generates temporary arrays for the SoVR
transformations. The generation of private scalars enabled our approach to achieve perfor-
mance improvements speedups ranging from 1.03× to 4.03× on KNL and 1.27× to 1.51×
on Volta. The overall geometric-mean speedups on all of the eleven benchmarks were
1.57× and 1.22× on the KNL and Volta platforms.

4.7 Related Work

Since there exists an extensive body of research literature in handling memory-based de-
pendences, we focus on past contributions that are closely related to variable expansion [113],
variable renaming including SoVR [55, 29], SiVR [30, 111, 123, 29] and Array SSA [112,
124].

Comparison with past approaches involving SoVR and/or SiVR transformations. Calland
et al. [29] formally defined both SoVR and SiVR transformations, and also explained the
impact of these transformations on a dependence graph. Also, Calland et al. proved that
the problem of finding the minimum number of statements to be transformed—to break
artificial dependence paths involving anti- or output-dependences—is NP-complete, and
proposed some heuristics. However, the implementation and impact of these techniques
on the performance of representative benchmarks were not mentioned. But, PolySIMD

utilizes both SoVR and SiVR in a complementary manner to coordinate each other, and
is built on a polyhedral framework (PPCG), and leveraged it for statement reordering to
enable vectorization. Also, we did not find a framework publicly available from the past
approaches. Chu et al. work in [30, 111] discussed dependence-breaking strategies in the
context of recurrence relations, and developed an algorithm for the resolution of general
multi-statement recurrences using the proposed strategies. But, the proposed algorithm for
the resolution of cycles is not optimal and may generate solutions having redundant SoVR
transformations.

Other works on storage transformations. Array SSA has been developed to convert a
given program into a static single assignment form to enable automatic parallelization of
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loops involving memory-based dependences [112], and also to extend classical scalar op-
timizations to arrays [124]. However, applying renaming on writes of every statement of a
loop body is significantly expensive in terms of additional space requirements, and may not
be required for enabling vectorization. Other approaches such as variable expansion [113]
can be used to break specific memory-based dependences. The variable expansion may
be beneficial for applying onto scalars but expanding multi-dimensional arrays inside the
inner-most loop for vectorization is expensive in terms of additional space. But variable
expansion can be useful in eliminating pure-output dependence cycles unlike with SoVR
and SiVR, which is a part of our future work.

Bounding additional space. There has been lack of support for bounding the extra
space required to break memory-based dependences in the past approaches [29, 30]. But
our approach provides a spacelimit clause that can help programmers to specify the max-
imum amount of extra storage that can be allocated. An alternative approach to enable
parallelization or vectorization has always been to convert the program to (dynamic) single
assignment form, through array expansion, followed by affine scheduling [125] for vector-
ization, and then applying storage mapping optimization [126] (a generalized form of array
contraction). Yet no such scheme can provide the guarantees that the affine transformations
obtained on the fully expanded arrays will enable storage mapping optimization to restore
a low-footprint implementation. Enforcing an a priori limit on memory usage would be
even harder to achieve. Furthermore, no integrated system enabling vectorization through
such a complex path of expansion and contraction has been available until now.

4.8 Summary

Despite the fact that compiler technologies for automatic vectorization have been under
development for over four decades, there are still considerable gaps in the capabilities of
modern compilers to perform automatic vectorization for SIMD units. This work focuses
on advancing the state of the art with respect to handling memory-based anti (write-after-
read) or output (write-after-write) dependences in vectorizing compilers. In this work, we
integrate both Source Variable Renaming (SoVR) and Sink Variable Renaming (SiVR)
transformations into a unified formulation, and formalize the “cycle-breaking” problem as
a minimum weighted set cover optimization problem. Our approach also can ensure that
the additional storage introduced by our transformations remains within the user-provided
bounds.

We implemented our approach in PPCG, a state-of-the-art optimization framework for
loop transformations, and evaluated it on eleven kernels from the TSVC benchmark suite.
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Our experimental results show a geometric mean performance improvement of 4.61× on an
Intel Xeon Phi (KNL) machine relative to the optimized performance obtained by Intel’s
ICC v17.0 product compiler. Further, our results demonstrate a geometric mean perfor-
mance improvement of 1.08× and 1.14× on the Intel Xeon Phi (KNL) and Nvidia Tesla
V100 (Volta) platforms relative to past work that only performs the SiVR transforma-
tion [29], and of 1.57× and 1.22× on both platforms relative to past work on using both
SiVR and SoVR transformations [30]. We believe that our techniques will be increasingly
important in the current era of pervasive SIMD parallelism, since non-vectorized code will
incur an increasing penalty in execution time on future hardware platforms.

So far, we described our enhancements in the compiler optimizations targeting ad-
vances in general-purpose architectures such as increasing numbers of light-weight cores
and larger SIMD units (Chapter 3 and Chapter 4). In the next chapters, we describe our
advancements in compiler optimizations for domain-specific accelerators for the domain of
machine learning and graph analytics.
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CHAPTER 5
MARVEL: A DATA-CENTRIC COMPILER FOR DNN OPERATORS ON

SPATIAL ACCELERATORS

5.1 Abstract

The efficiency of a spatial DNN accelerator depends heavily on the compiler and its cost
model ability to generate optimized mappings for various operators of DNN models on to
the accelerator’s compute and memory resources. But existing cost models lack a formal
boundary over the operators for precise and tractable analysis, which poses adaptability
challenges for new DNN operators. To address this challenge, we leverage the recently
introduced Maestro Data-Centric (MDC) notation. We develop a formal understanding
of DNN operators whose mappings can be described in the MDC notation, because any
mapping adhering to the notation is always analyzable by the MDC’s cost model. Further-
more, we introduce a transformation for translating mappings into the MDC notation for
exploring the mapping space.

Searching for the optimal mappings reflecting best latency and energy efficiency is
challenging because of the large space of mappings, and this challenge gets exacerbated
with new operators and diverse accelerator configurations. To address this challenge, we
propose a decoupled off-chip/on-chip approach that decomposes the mapping space into
off-chip and on-chip subspaces, and first optimizes the off-chip subspace followed by the
on-chip subspace. The motivation for this decomposition is to reduce the size of the search
space dramatically and also to prioritize the optimization of off-chip data movement, which
is 2-3 orders of magnitude more compared to the on-chip data movement. We implemented
our approach in a tool called Marvel, and another major benefit of our approach is that it is
applicable to any DNN operator conformable with the MDC notation.

Overall, our approach reduced the mapping space by an O(1010) factor for the four ma-
jor CNN models (AlexNet, VGG16, ResNet50, MobileNetV2), while generating mappings
that demonstrate a geometric mean performance improvement of 10.25× higher through-
put and 2.01× lower energy consumption compared with three state-of-the-art mapping
styles from past work. We also evaluated our approach over the GEMM, LSTM, and MLP
workloads and also compared with the optimizers from past work.
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5.2 Introduction

Deep learning (DL) is a fundamental technology for many emerging applications such as
autonomous driving [5], translation [4], and image classification [3], with accuracy close
to, and even surpassing, that of humans [66, 67, 68]. Achieving low latency and energy
goals with stringent computation and memory constraints of deep neural network models
(DNNs) for mobile [127] and edge [128] devices has emerged as an important challenge.
To cope with this challenge, specialized hardware accelerators for DNN inference are being
developed and deployed [129, 47, 46, 128, 130]. Most of these accelerators are “spatial”,
i.e., they are built by interconnecting hundreds to thousands of processing elements (PEs).
They achieve high throughput by exploiting parallelism over the PEs and energy efficiency
by maximizing data reuse within the PE array via direct data forwarding between PEs and
the use of scratchpad memories [40, 45, 46, 42, 41, 43, 131, 132].

Figure 5.1: Overview of the design-time flow for computer architects developing new accelerators,
and the compilation flow for ML programmers leveraging the accelerators. Scope of this work is
the mapping explorer and the loop optimizer in the above diagram.

The efficiency of accelerators depends heavily on the compiler’s ability to generate op-
timized mappings for various operators of DNN models on to the accelerator’s compute
and memory resources. A mapping involves parallelization, tiling, and scheduling strate-
gies [133, 134]. Optimized compilers (or mappers) optimizing various DNN operators are
necessary during compile-time for ML programmers, and design-time for computer archi-
tects to understand reuse and data movement behaviors to design a new accelerator, as
shown in Figure 5.1. Thus, expressing DNN mappings and determining optimal ones is a
crucial component of DNN deployment on accelerators.
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Mappings are often expressed as loop nests, a syntax that resembles a simple imperative
programming language with explicit parallelism. Many cost models such as TimeLoop [133],
DMazeRunner [135], Interstellar [136] are developed over the loop nest description of map-
pings. The loop nests syntax is very generic and can help architects/compilers in express-
ing a wide range of operator mappings, but the underlying cost models may not analyze all
possible mappings expressible in loop nests. Furthermore, these cost models do not have
a formal boundary over DNN operators for precise and tractable analysis. Having such no
formal boundaries can bring adaptability challenges to these cost models in the compiler
infrastructures and also to computer architects for design-time exploration of new DNN
operators onto accelerators.

In this work, we address the above challenge. We leverage the recently introduced
“Maestro Data-Centric” (MDC) notation [134] for expressing mappings. MDC is promis-
ing because any mapping adhering to the notation can be analyzable using the MDC’s cost
model. Moreover, the notation explicitly defines data mapping and organization, instead of
inferring it from loop nests. The overall focus of this work is on (1) developing a formal
understanding of DNN operators whose mappings can be described in the MDC notation,
(2) introducing a transformation for translating mappings into the MDC notation for ex-
ploring the mapping space, and finally (3) proposing an efficient exploration strategy to
quickly navigate the large mapping space of DNN operators. The key contributions are
briefly described below.

1) Conformable DNN operators. The promising aspect of the MDC notation, i.e.,
analyzability, comes at the cost of its expressiveness. In this work, we introduce a formal
set of rules (Section 5.4) in identifying DNN operators whose mappings can be described
in the MDC notation. We call an operator satisfying the formal rules as the conformable

operator, and Table 5.1 lists the conformability of the popular operators with the MDC
notation.

2) Transformation. The MDC notation is powerful in expressing and reasoning com-
plex mappings of DNN operators onto the diverse spatial accelerators, but explicitly writing
and exploring such mappings can be error-prone and tedious. Computer architects [133]
and DNN compiler frameworks [76] view the operators and their mappings majorly in the
loop nest form. Hence, we introduce a transformation (Section 5.5) that translates a map-
ping specified in the loop nest form to the MDC notation and can help both the architects
and compilers for mapping space exploration.

3) Mapping space exploration. The efficiency of any mapping is tightly cross-coupled
with both the algorithmic aspects of DNN operators and the microarchitectural aspects of
accelerators. Searching for the optimal mapping reflecting best latency and energy effi-
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ciency is challenging because of a massive space of possible loop transformations on the
operators. For example, there are over 1019 valid mappings for the CONV2D on average
for mapping ResNet50 [137] and MobileNetV2 [138] on a representative DNN edge accel-
erator. This challenge gets exacerbated with new operators (e.g., depth-wise) and diverse
hardware accelerator configurations. Much of the prior work [132, 131, 139, 140] targeted
hardware with limited capabilities or fixed certain aspects of the mapping space such as
choice of parallel loops and loop orders [136, 135, 132, 131, 141]. Approaches supporting
broader classes of architectures and mappings suffer from a combinatoric explosion in the
size of mapping space.

Our approach for the mapping problem is motivated by the observation that the off-
chip data movement between DRAM and accelerator is 2-3 orders of magnitude more
compared to the on-chip data movement involving the PE array and the local scratchpad
buffers [40, 142]. Hence, we propose an approach (Section 5.6) referred as “decoupled
off-chip/on-chip” that decomposes the mapping space into two subspaces, i.e., off-chip and
on-chip subspaces, and first optimizes the off-chip subspace followed by exploring the on-
chip mapping subspace constructed with the optimal mappings from the off-chip subspace.
In contrast to prior work [133, 136, 135], we use different approaches and cost models for
these subspaces, i.e., a classical distinct-block (DB) locality cost model [143, 56] to explore
the off-chip subspace, and the MDC’s cost model [134] for the on-chip subspace.

We implemented the above approach in a tool called “Marvel”, and our approach is
applicable to any operator conformable with the MDC notation. Given a conformable
DNN operator, workload sizes, and a target accelerator configuration, Marvel explores the
mapping space of the operator using the decoupled approach and then outputs the map-
pings optimized for runtime and energy. Overall, our approach reduced the mapping space
by an O(1010) factor for the four major CNN models (AlexNet, VGG16, ResNet50, Mo-
bileNetV2), while generating mappings that demonstrate a geometric mean performance
improvement of 10.25× higher throughput and 2.01× lower energy consumption compared
with three state-of-the-art mapping styles from past work. We also evaluated our approach
over the GEMM, LSTM, and MLP workloads and also compared Marvel generated map-
pings with the optimizers from past work.

5.3 Background

In this section, we provide a brief overview of the spatial DNN accelerators and also the
MDC notation to describe mappings of a DNN operator onto the accelerators.
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5.3.1 Spatial DNN Accelerators
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Figure 5.2: Abstract spatial accelerator model which is pervasive in many state-of-the-art accelera-
tors [40, 46, 144, 43].

Figure 5.3: A broader overview of a spatial accelerator system having multiple accelerators in the
form of clusters.

Spatial DNN accelerators based on ASICs and FPGAs have emerged to address ex-
treme demands on performance and energy-efficiency of CNN layers [40, 45, 46, 42, 41,
43]. Such accelerators are built using an array of processing elements (PEs) to provide
high parallelism and use direct communication instead of via shared memory for energy-
efficiency. An abstract model of spatial accelerators is shown in Figure 5.2 (and its broader
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overview with multiple accelerators in a system shown in Figure 5.3), where each PE of
an accelerator consists of a single/multiple ALU(s) dedicated for multiply-accumulate op-
erations (MACs) and a local scratchpad (L1 buffer). Also, accelerators employ various
network-on-chips (NoCs) for direct communication among PEs and between PE array and
L2 scratchpad buffer. The interconnection network often supports multi-casting data to
multiple PEs, which can reduce the total number of data reads from L2 buffer to PEs. Un-
like GPU cores, PEs can communicate with adjacent PEs (data forwarding) using a NoC,
which can significantly reduce the energy consumption for expensive L2 buffer accesses.
Accelerators also typically employ a large shared L2 scratchpad buffer to stage data from
DRAM and also partial accumulations from PE arrays. Both L1 and L2 scratchpad buffers
are software-controlled memories, i.e., programmer/compiler directly controls contents of
the buffer, unlike cache memories, which implicitly manages them, and this is because
the memory traffic in accelerators is known in advance. Many spatial accelerators can be
further interconnected together to create a scale-out system [47].

5.3.2 MDC Notation

The Maestro Data-Centric (MDC) notation for a DNN operator mapping onto a spatial
accelerator consists of two aspects, i.e., 1) Computation and tensor sizes, and 2) Data map-
ping directives over tensor dimensions. A sample mapping of the CONV1D operator in
the MDC notation is shown in Figure 5.4(B). A major novelty of the MDC notation is that
the data mappings of tensors across space (PEs) and time are explicitly specified using a
set of data mapping directives, which makes the MDC’s cost-model to estimate data move-
ment and reuse behaviors of a mapping precisely and quickly. We briefly describe the data
mapping directives of the MDC notation with the mapping in Figure 5.4(B) as the example.

1) TemporalMap (size, offset) d specifies a distribution of the dimension d of a ten-
sor across time steps in a PE, and the mapped set of dimension indices is same across
PEs in a given time step. The size parameter refers to the number of contiguous indices
mapped in the dimension d to each PE, and the offset parameter describes the shift in
the starting indices of d across consecutive time steps in a PE. For instance, the directive
TemporalMap(2,2) dw in the running example represents the distribution of first dimen-
sion (dw) of the weight tensor with two indices mapped in each time step (i.e., dw={0,1} in
PE0 and PE1 at t = 0). Also, the offset of two denotes the increment in dw index after each
time step (i.e., dw={2,3} in PE0 and PE1 at t = 1) till the extent of dw dimension is explored.

2) SpatialMap (size, offset) d specifies a distribution of the dimension d of a tensor
across PEs. The size parameter refers to the number of contiguous indices mapped in
the dimension d to each PE, and the offset describes the shift in the starting indices of d
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Figure 5.4: A mapping of the CONV1D in the MDC notation along with the visualization of its data
mappings.

across consecutive PEs. For instance, the directive SpatialMap(1,1) dO in the running
example represents the distribution of first dimension (dO) of the output tensor with one
index mapped to each PE (i.e., dO={0} in PE0 and dO={1} in PE1 at t = 0). If the number
of PEs is not sufficient to cover all indices of the dimension mapped, then the mapping is
folded over time across the same set of PEs.

3) Directive order. The sequence of spatial and temporal map directives in a map-
ping dictates the change of data mappings to PEs across time. Similar to a loop order, all
the dimension indices corresponding to a mapping directive are explored before its outer
mapping directive in the sequence begins exploring its next set of indices. For instance,
the sequence of directives in the running example, i.e., spatial map over dO followed by
temporal map over dW dictates that all the dimension indices of the weight tensors need to
be explored before exploring the next set of dO indices. This order results in accumulating
the partial results of an output before computing another output, popularly referred to as
“output stationary” mapping [145]. However, the sequence notation has a limitation that
it cannot capture scenarios where there is more than one dimension index simultaneously
changing over time (except at the dimension boundaries).

4) Clusters (size) logically groups multiple PEs or nested sub-clusters with the group
size as the size parameter. For example, Cluster (2) directive on an accelerator with
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ten PEs arranges the PEs into five clusters with the cluster size as two. All the mapping
directives above a cluster directive operate over the introduced logical clusters, while those
below the cluster directive operate within a logical cluster. The cluster directive is ex-
tremely useful in exploiting spatial distribution of more than one tensor dimensions (e.g.,
row-stationary mapping [40]). Also, the directive helps in constructing hierarchical accel-
erators by recursive grouping.

The above aspects of the MDC notation can help in precisely specifying a wide range
of mappings, including popular and sophisticated mapping styles such as row-stationary in
Eyeriss [40], weight-stationary in NVDLA in [46], output-stationary in ShiDianNao [145]
accelerators. However, its not clearer if all mapping behaviors of an operator can be repre-
sented in the MDC notation.

5.4 Conformable DNN Operators

In this section, we introduce formal rules in identifying conformable DNN operators whose
mappings (reuse, parallelization and tiling strategies) can be described using the MDC
notation. We discuss rules over the abstract loop nest notation of DNN operators without
any transformations for reuse and parallelization (e.g., CONV1D in Figure 5.5).

R1: A conformable DNN operator in the abstract loop nest form must be a per-
fectly nested loop without any conditional statements.
The MDC notation restricts its computation to be uniform across all PEs at all time-steps.
This restrict is satisfied if the computation is enclosed in a perfectly nested loop without
any conditional statements. Most of the DNN operators such as CONV2D, GEMM, MLP
(more in Table 5.1) can be expressed in the form of perfectly nested loops without any
conditionals. But there can be implementation of certain operators such as fusion of two
convolutions, where each PE requires executing the non-uniform computation. Hence, such
operators are discarded and are non-conformable to the MDC notation.

R2: The perfectly nested loop must not have any dependences (flow, anti, output)
except reduction dependences, and thus the loops can be freely reordered.
The MDC notation restricts the input and output tensors of an operator to be different, and
this results in not having any flow- and anti-dependences between the tensors. However, the
notation can support reduction operations (e.g., add, max, min), and this leads to supporting
reduction dependences, i.e., flow, anti, output dependences only on the output tensor. Sim-
ilar to the rule R1, most of the DNN operators mostly have only reduction dependences,
except few operators such as parametric multi-step LSTMs which have flow dependences.

R3: The dimension dependence graph (DDG) of the perfectly nested loop must
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Figure 5.5: The dimension dependence graph (DDG) of simple operators such as CONV1D and
stencil satisfying the rule R3, and an example violating the rule R3. dO/dI /dW : tensor dimension
variables corresponding to the output, input, and weight tensors.

have a topological ordering, and the subscripts of dependent dimension variables of
the DDG graph must be in the form of linear combination of its loop iterators.
The directive order (sequence of mapping directives) of the MDC notation dictates the
change of the data mappings to PEs across time. As described in the Section 5.3.2, the
directive order has limitations in capturing more than one tensor dimension variable chang-
ing simultaneously over the time (except at boundaries). We introduce a directed graph
called Dimension Dependence Graph (DDG) to find the possibility of such data movement
behaviors in a DNN operator.

Each node of a DDG graph denotes a tensor dimension variable along with the array
subscript referenced in that dimension. For instance, the node (dI:i0+i1) in Figure 5.5(a)
represents the tensor subscript i0+i1 used in the input tensor dimension with name dI . The
edges of the DDG are constructed as follows: 1) An edge is added from a node having
a SIV/MIV subscript1 to another node having a MIV subscript if there is a common loop
iterator in their subscripts. For e.g., there is a directed edge from the node (dO:i0) to
(dI:i0+i1) in Figure 5.5(a) since they have a loop iterator i0 in common. 2) All the SIV
subscripts are grouped based on their loop iterators, and then edges are added from the
SIV subscript of a group having the lowest constant value (randomly choose if there exists

1Single Index Variable (SIV) subscript involves one loop iterator, whereas Multiple Index Variable (MIV)
subscript involves more than one loop iterator [146].
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multiple) to other SIV subscripts in the same group. For e.g., there is a directed edge from
the node (dI:i0) to all the nodes (dI:i0 +1), (dI:i0 +2), and (dO:i0) in Figure 5.5(b). 3) If
there is a loop iterator (say i) dependent on other loop iterators (say j) in its loop bounds,
then construct an edge from a node with subscript having the loop iterator i to other nodes
having the loop iterator j in their subscripts.

Now, the possibility of having multiple dimension variables changing simultaneously
is reduced to the problem of finding a topological ordering in the DDG graph. In essence,
the absence of a topological ordering indicates the presence of mutually dependent dimen-
sion variables (e.g., example in Figure 5.5(c)). In the presence of a topological ordering,
the MDC notation requires the data mappings of independent dimension variables to be
specified, and these variables are identified from the nodes of the DDG graph having zero
in-degree. For e.g., in the case of CONV1D in Figure 5.5(a), only the data mappings of
dimension variables related to output and weight tensors must be specified, and the dimen-
sion variable related to the input tensor is inferred by the underlying MDC’s cost model.
Hence, the subscripts of dependent dimension variables need to be linear expressions of
loop iterators so as to be analyzable by the MDC’s cost model. In addition, the MDC no-
tation expects to have only one data mapping over an independent dimension variable. If
there exists more than one node with zero in-degree in the DDG graph associated with the
same dimension variable, then we consider that DNN operator to be non-conformable.

R4: The subscripts associated with the independent dimension variables of the
DDG graph must be in the form of linear combinations of its loop iterators with the
positive unit coefficients and no constants.

A mapping directive (either spatial or temporal) over a dimension variable restricts the
variable to start from zero and increase with unit stride. These restrictions don’t allow the
dimension variable to have strided increments or negative strides. To characterize the im-
plication of above restrictions, we assume the abstract loop nest form of the DNN operator
to be normalized, i.e., its loop iterators start from zero and have unit strides. To support the
restricts imposed the mapping directives, each subscript (in the normalized form) associ-
ated with an independent dimension variable must be in the form of a linear combination of
the subscript’s loop iterators with the positive unit coefficients and no constants. For e.g.,
the subscript i0 associated with the dimension variable dO in Figure 5.5(a) is in the linear
form of its iterators (i0) with coefficient as one and no constant.

With positive unit coefficients and no constants, the SIV subscript associated with an
independent dimension variable is simply a unique loop iterator (e.g., i0 for dO, i1 for dW

in Figure 5.5(a)). Furthermore, the MIV subscript associated with an independent dimen-
sion variable is also in the form of adding the subscript’s loop iterators. These loop iterators
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cannot be part of any subscripts associated with other dimension variables; otherwise, their
in-degree wouldn’t have been zero. Hence, the loop iterators corresponding to such MIV
subscript can be merged into a single loop. Overall, the subscripts associated with each of

the independent dimension variables are simply unique loop iterators (e.g., i0 for dO, i1

for dW in Figure 5.5(a)).
Finally, an operator is said to MDC conformable if it satisfies all the four rules described

above. Table 5.1 lists the set of popular DNN operators and the conformability of these
operators with the MDC notation. As can be seen, the MDC notation can capture most of
the DNN operators except parametric LSTM’s, and the mappings of these operators can be
analyzable by the MDC’s cost model.

Table 5.1: Conformability of the popular DNN operators onto the MDC notation (Y/N refers to
YES/NO).

DNN
Operator Types R1 R2 R3 R4 Conformable

to MDC
CONV1D Regular Y Y Y Y Y

CONV2D

Regular Y Y Y Y Y
Point-wise,
Depth-wise Y Y Y Y Y

Strided,
Dilated Y Y Y Y Y

MLP Fully
connected Y Y Y Y Y

Pooling Max, Avg Y Y Y Y Y

GEMM Regular Y Y Y Y Y
Triangular Y Y Y Y Y

LSTM Single cell Y Y Y Y Y
Parametric
multi-cell Y N Y Y N

Element
wise

Residual Y Y Y Y Y
ReLU Y Y Y Y Y

Stencils Regular Y Y Y Y Y

Coverage of MDC Conformable Operators. We have used Tensorflow profiler to
identify the DNN primitive operators in the DNN models of MLPerf suite, VGG16, and
AlexNet models. Table 5.2 lists those primitive operators and their occurrences in each
DNN model. All the identified primitive operators are conformable with the MDC notation,
and also, we did not have to rewrite any of those operators to make it MDC conformable.

5.5 Transformation

The MDC notation is powerful in expressing and reasoning complex mappings of DNN
operators onto the diverse spatial accelerators, but explicitly writing and exploring such
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Table 5.2: DNN primitive operators, occurrences, and MDC conformability in the MLPerf [147]
DNN models, VGG16, and AlexNet models.

DNN
Primitive
Operator

MLPerf Suite VGG16 AlexNet MDC
Confor
-mable?

Mobile-
NetV1

Res-
Net50

SSD-
MobileNet

SSD-
ResNet34 GNMT

CONV2D 15 54 34 51 0 16 9
Depth-wise
CONV2D 13 0 13 0 0 0 0

Bias Add 1 1 12 12 0 1 1
Batch

Normali
-zation

13 20 13 15 0 0 0

ReLU 27 49 35 37 0 15 8
Softmax 1 0 0 1 0 1 1

Avg
pooling 1 0 0 0 0 0 0

Max
Pooling 0 1 0 1 0 5 3

GEMM 0 0 0 0 9 0 0

mappings can be error-prone and tedious. Computer architects [133] and DNN compiler
frameworks [76] view the operators and their mappings majorly in the loop nest form [133,
132, 131]. This section introduces a transformation to translate a mapping of the con-
formable DNN operator in the loop-nest form into the MDC notation. In this work, we
assume the target spatial accelerators having three levels of the memory hierarchy (pri-
vate L1 buffer, shared L2 buffer, and DRAM). However, our transformation can be easily
extendable to more levels of hierarchy.

As described in the Section 5.3.2, the MDC notation consists of two aspects, i.e., 1)
Computation and tensor sizes, and 2) Data mapping directives over independent tensor
dimensions. The statements enclosed in the perfectly nested loop form of the conformable
DNN operator are used as the computation, and the tensor sizes are extracted from the
workload configuration. The computation and tensor sizes of the MDC notation remains
the same for each mapping of the operator. Then, the dimension dependence graph of the
operator is constructed to identify the set of independent tensor dimension variables (having
zero in-degree). If there are no such independent dimension variables, then the operator is
discarded as non-conformable. The rest of the section focuses on generating data mapping
directives for each mapping.

5.5.1 Data Mapping directives

According to the rule R2, the loops of a conformable DNN operator can be freely reordered,
so it is safe to perform multi-level tiling to exploit temporal reuse across each level of the
memory hierarchy and also to exploit parallelism of the accelerator. Each tiling, reuse
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and parallelization behavior of an operator onto a spatial accelerator is referred to as a
“mapping”. An example of the mapping of a CONV1D operation over a 3-level accelerator
is shown in Figure 5.6 (C), and the different aspects of the mapping are described below.
1) Multi-level tiling tile sizes. A mapping includes tile sizes of all loop iterators for
each level of tiling, i.e., 1) Level-1 tiling for the private L1 buffer, 2) Level-2 tiling for the
parallelism, and 3) Level-3 tiling for the shared L2 buffer.
2) Inter-tile loop orders. A mapping also includes inter-tile loop orders2 to describe the
execution order of tiles reflecting various reuse opportunities. E.g., the level-2 inter-tile
loop order reflects spatio-temporal reuse over the PE array, and the level-3 inter-tile loop
order reflects temporal reuse over the on-chip L2 buffer. But, the level-1 inter-tile loop
order doesn’t reflect any reuse, because these loops are annotated with parallelism. Also,
the loop order among point-loops doesn’t provide any reuse opportunities because there is
no more intermediate staging between the PE and its L1 buffer.

An n-level tiling will have n set of tile-loops (including parallel loops) and a set of
point-loops. Each set of loops can have a different data movement (reuse) behavior based
on its sizes and loop order. We introduce a term called “region” to denote a sequence
of data mapping directives over independent tensor dimension variables (e.g., Region R1
in Figure 5.6(d)) without any cluster directives, and each region captures the data movement
behavior present in each set of loops. Given a mapping of the operator in the form of multi-
level tile sizes and inter-tile loop orders, our approach transforms the mapping into the
MDC notation as per the following steps.
1) Point-loops. As described in Rule 4, each subscript associated with an independent
dimension variable is simply an unique loop iterator. Our approach translates each loop
of point-loops into a temporal map directive over the corresponding independent dimen-
sion variable with size and offset parameters of the directive being the point-loop size.
For, e.g., the point loop t1i with tile size as T1i in Figure 5.6(c) is directly translated into
TemporalMap(T1i,T1i) dO in the region R1 shown in Figure 5.6(d). Since the loop order
among the point-loops doesn’t provide any reuse benefits, the directive order in the region
R1 doesn’t matter.
2) Parallel-loops. Since each independent dimension variable is uniquely associated with
a loop iterator, parallel execution of each loop iterator introduces a different data movement
behavior. Hence, for each parallel loop, we introduce a region with a spatial map over the
dimension variable associated with the parallel loop, and the temporal maps for the rest of

2An n-dimensional loop nest after one level of tiling will have 2n loops. The outer n-loops are referred to
as inter-tile loops and the later n-loops as intra-tile loops. The innermost n-loops after multi-level tiling are
called as point-loops.
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Figure 5.6: A brief overview of the mapping expressed in the loop-nest form of CONV1D, and its
translation into the MDC notation with data mapping directives.

the dimension variables in the region. For, e.g., there are two regions with name R2 and
R3 for the parallel loops corresponding to t2 j and t2i, respectively. Also, the dimension
dW associated with the iterator t2 j and the dimension dO associated with the iterator t2i are
translated into spatial maps in R2 and R3 regions respectively. The size and offsets
of each spatial map over a dimension variable is derived from the strides of the parallel
loop iterators corresponding to the dimension variable. The order of directives in each
region corresponding to a parallel loop doesn’t matter because the number of iterations
arising from the rest of the temporal maps is one. Each region corresponding to a parallel
loop (except the innermost) is ended with a cluster directive with size as the number of
iterations in the parallel loop. For, e.g., the region R3 is ended with a cluster directive with
size as the number of iterations of the loop t2i.
3) Inter-tile loops. For each set of tile-loops excluding parallel loops, our transformation
generates a region by creating a temporal map directive for each loop of the set with the
size and offset of the directive as the loop stride. For, e.g., the inter-tile loop t3 j with
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stride as T2 j in Figure 5.6(c) is directly translated into TemporalMap(T2 j,T2 j)dI in the
region R4 shown in Figure 5.6(d). The order of directives in a region is governed by the
loop order among the corresponding tile-loops. For, e.g., the level-3 inter-tile loop order
(t3 j,t3i) dictates the temporal map over dW outer compared to temporal map over dO in
region R5. Furthermore, each region is separated by cluster directive with size one to
support different data movement behaviors across each set of tile-loops.

5.6 Mapping Space Exploration

The mapping space of a conformable DNN operator onto an accelerator having three levels
of memory hierarchy is a cross product of valid level-1 tile sizes, level-2 tile sizes (paral-
lelism), level-2 inter-tile loop orders, level-3 tile sizes, and level-3 inter-tile loop orders.
For example, there are over 1019 valid mappings for a single CONV2D operator on aver-
age for mapping ResNet50 and MobileNetV2 on a representative DNN edge accelerator.
Because of this massive space of mappings, searching for efficient mappings is really chal-
lenging. This challenge gets exacerbated with new operators (e.g., depth-wise) and diverse
hardware accelerator configurations (e.g., tree-based interconnect [144]).

We consider (optional) a limited form of data-layouts, i.e., innermost dimension re-
ordering [148] for the tensors of operators on the DRAM. Overall, the mapping space of
an operator is a Cartesian product of six dimensions which represent different aspects of
a mapping, i.e., 1) level-1 tile sizes, 2) level-2 tile sizes (parallelism), 3) level-2 inter-tile
loop orders, 4) level-3 tile sizes, 5) level-3 inter-tile loop orders, and 6) data-layout of
tensors. The first three dimensions are grouped under “on-chip mapping subspace” since
they influence parallelization and on-chip data movement, and the remaining three dimen-
sions are grouped under “off-chip mapping subspace” since they influence the off-chip data
movement.

Our approach towards the mapping space exploration is motivated by the observation
that the off-chip data movement between DRAM and accelerator is 2-3 orders of magnitude
more compared to the on-chip data movement. Hence, we propose an approach referred
as “decoupled off-chip/on-chip” that decomposes the mapping space into two subspaces,
i.e., off-chip and on-chip subspaces, and first optimizes the off-chip subspace followed by
the on-chip subspace which is constructed with the optimal mappings from the off-chip
subspace. In contrast to prior work [133, 136, 135], we use different approaches and cost
models for these subspaces, i.e., a classical distinct-block (DB) locality cost model [143,
56] to explore the off-chip subspace, and the MDC’s cost model [134] for the on-chip sub-
space. The overall approach is implemented as a standalone tool (shown in Figure 5.7) that
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takes a conformable DNN operator, workload sizes, and a target accelerator configuration,
then explores the mapping space of the operator using the decoupled approach, and finally
outputs the mappings optimized for runtime and energy.

Figure 5.7: An overview of our approach along with pruning strategies for searching mapping
space of convolutions. The pruning strategies in green color preserve optimal mappings, whereas
the strategies in red color may prune optimal.

5.6.1 Solving off-chip mapping subspace

The goal of finding an optimal mapping in the off-chip mapping subspace is to minimize
off-chip data movement between DRAM and the L2 buffer of an accelerator. In our work,
we assume the L2 buffer to be a software-managed scratchpad buffer, and reducing the

off-chip data movement3 is equivalent to finding a level-3 tile that has highest arithmetic

intensity, this is because the highest arithmetic intensity results in higher reuse and less data
transfer.

In our approach, we consider the classical distinct-block (DB) locality cost model [143]
to measure the off-chip data movement cost, which was developed as part of the memory

3In case of non-software-managed scratchpad buffers, reducing data movement between DRAM and L2
buffer is equivalent to finding a level-3 tile whose memory footprint can fit into the L2 buffer and is maximum.
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cost analysis to guide automatic selection of loop transformations and also optimal tile
size selections [56, 149, 150] in IBM XL compilers. The DB model is a good choice for
our approach, since the model only focuses on optimizing for off-chip data movement.
Moreover, it focuses only on perfectly nested loop, and conformable DNN operators are
perfectly nested loops as per the rule R1 in Section 5.4.

The distinct blocks (DB) model starts with data-layouts of multi-dimensional arrays and
also the parametric tiled version of a perfectly nested loop. Then, the model symbolically
estimates the off-chip data movement cost involved in a tile of computation by measuring
the number of the distinct number of DRAM blocks required for all the references in the tile
of computation. Assuming the array I is laid out in the row-major order, the distinct number
of DRAM blocks (with block size as B and tile sizes TX, TY) required for an example array
reference I[x+y][y] enclosed in a triply nested loop with iterators x, y, z is computed
as follows:

DBI(TX,TY) ≈
(⌈TX + TY

b

⌉)
× (TY) × TZ

In the above formulation, the innermost access of the reference is divided by the block
size4, because the data movement with DRAM happens in multiples of block sizes. Now,
the total data movement cost (DMC), a.k.a. memory cost per iteration, involved in a tile is
computed as the number of distinct DRAM blocks required for all references in the tile by
the total number of iterations in the tile. The optimal level-3 tile sizes and data-layouts are
computed by minimizing the data movement cost function for every layout and tile sizes
in the off-chip mapping subspace with the two constraints, i.e., 1) the tile size of a loop
should be greater than 0 and should not exceed its corresponding loop bound, and 2) the
total data required (including double buffering) for a level-3 computation tile should fit into
the on-chip L2 buffer.

After computing the optimal level-3 tile sizes and data-layouts of tensors, our approach
computes the partial derivatives (slopes) of the data movement cost function (based on
the optimal data-layout) with respect to parametric level-3 tile sizes (similar to [56]), and
evaluate the partial derivatives by substituting optimal level-3 tile sizes. The key insight is
that having a higher negative value of a partial derivative along a loop indicates the lesser
distinct number of elements referenced along the loop, i.e., highest reuse along the loop,
and it is suggested to keep it in the innermost position to exploit maximum temporal reuse.
Similarly, the rest of the loops are ordered based on their partial derivative values.

4Setting block size to one ignores the impact of data-layouts that we consider in our approach (innermost
dimension reordering [148]).
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5.6.2 Solving on-chip mapping subspace

The on-chip mapping subspace is constructed based on the optimal values of level-3 tile
sizes. Then, our approach explores the constructed subspace to find optimal mappings for
each of the three optimal goals, i.e., lower runtime (higher throughput), lower energy con-
sumption, and lower energy-delay product. For each mapping of the constructed subspace,
our approach transforms the mapping into its equivalent MDC notation (described in Sec-
tion 5.5). Then, our approach uses the MDC’s cost model [134] to estimate various metrics
such as latency and energy of each mapping in the on-chip subspace. The MDC’s cost
model precisely computes performance and energy, accounting for under-utilization, edge
conditions, and data reuse or movement across time (via L1/L2 buffers [40]), space (via
broadcast links [144]), and space-time (via neighboring links [43, 151]) without requiring
explicit RTL/cycle-level simulations or access to real hardware.

Algorithm 3: Our approach to explore on-chip mapping subspace, including
pruning strategies
1 for every level-2 inter-tile loop order do
2 for every level-2 tile size do
3 Hardware pruning: PE utilization bound
4 Hardware pruning: No prologues/epilogues
5 for every level-1 tile size do
6 Hardware pruning: Finite L1 size buffer
7 Hardware pruning: No prologue/epilogue
8 // Translate mapping into MDC form
9 Invoke the MDC’s cost model→ (runtime, energy, and other metrics)

Algorithm 3 shows an overview of our approach in exploring the on-chip mapping
subspace along with pruning strategies. We introduce a parameter called “PE utilization
bound (p)” to prune search space of level-2 tile sizes by bounding the overall PE array
utilization to be at-least the parameter p. The above technique is beneficial in finding
optimal on-chip mappings with the optimization goal being throughput, because the highest
throughput is typically obtained at higher PE utilization rates [129]. Our approach also
includes a pruning strategy to choose level-1 and level-2 tile sizes such that they don’t
result in any prologues or epilogues, i.e., the tile sizes are factors of loop bounds. All of the
above-mentioned pruning strategies can be enabled/disabled in Marvel by passing them as
input parameters.

83



5.7 Evaluation

In this section, we begin with an overview of the experimental setup used in our evalua-
tion. Then, we present the evaluation of mappings generated by Marvel for a wide variety
of DNN operators (CONV2D, GEMM, MLP, and LSTM), and discuss insights from the
mappings while comparing them with previous work.

Table 5.3: Accelerator setups in our evaluation.
Accelerator

platform (P1)
(Eyeriss-like [40])

Accelerator
platform (P2)

(Edge/IoT-like) [128]
#PEs 168 1024

Clock frequency 200 MHz 200 MHz
GigaOpsPerSec(GOPS) 67.2 409.6
NoC bandwidth (GB/s) 2.4 25.6

L1 buffer size 512B 512B
L2 buffer size 108KB 108KB

DRAM block size [152] 64 64

Target accelerators. Marvel is applicable to any spatial accelerator since it abstracts
accelerator details as #PEs, L1/L2 buffer sizes, NoC bandwidth, reduction/multicast sup-
port and others, which can be used to model a wide variety of accelerators including Eye-
riss [40], NVDLA [46], TPU [128], xDNN. Due to space limitations, we present our eval-
uation for only two accelerator platforms (shown in Table 5.3): An accelerator (Eyeriss-
like [40]) having 168 PEs and 2.4GB/s NoC bandwidth, and another accelerator having
1024 PEs and 25.6GB/s. We inherit L1, L2 buffer, and clock frequency for both platforms
from Eyeriss [40], i.e., 512B L1 buffer, 108KB L2 buffer, and 200MHz clock frequency.
The bidirectional NoC used in our evaluation is a two-level hierarchical bus, which has
support for multicasting similar to Eyeriss.
Experimental variants. We have implemented few of the exploration strategies of
recent optimizers such as Interstellar [136] and dMazeRunner [135] in our framework.
For, instance, the Interstellar optimizer focuses on parallelizing input and output chan-
nels of CONV2D operators, whereas the dMazeRunner optimizer focuses on paralleliz-
ing only output channels and a limited set of loop orders. We compare Marvel generated
mappings for each workload and accelerator platform with three variants: 1) Marvel im-
plemented Interstellar-like [136] optimizer generated mappings, 2) Marvel implemented
dMazeRunner-like [135] optimizer generated mappings, and 3) Roof-line peak based on
the workload arithmetic intensities and accelerator configurations.
Methodology. We have evaluated all the mappings generated by the experimental variants
using the MAESTRO cost model [134]. Moreover, the analytical cost model within the
MAESTRO framework is validated against the RTL implementations of Eyeriss [40] and
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MAERI [144] on VGG16 and AlexNet models. We passed a pruning option to the Marvel
to choose tile sizes that divide loop bounds evenly without any remainder, and this has
been the consideration in the other approaches [133, 136, 135, 131, 132]. We also set the
minimum PE array utilization bound as 0.1, i.e., at-least 10% of the PE array should be
mapped with computation. We apply 8-bit fixed point precision for all the tensors used in
our evaluation.

5.7.1 Evaluation on CONV2D

The CONV2D is a widely used DNN operator in convolution neural networks, and these
operators account for more than 90% of overall computation [63, 40], dominating overall
latency, and energy consumption in inferences. In our evaluation, we considered popular
CNN models, such as AlexNet [64], VGG16 [65], ResNet50 [137], and MobileNetV2 [138],
with a batch size of one as this captures the low latency requirement use case and also rep-
resents a more challenging setup for energy efficiency and throughput [129]. In addition,
these models encompass a broad spectrum of CONV2D operators such as regular, point-
wise, depth-wise, strided variants with different filter shapes.
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Figure 5.8: Performance comparison of Marvel generated mappings with the mappings of
dMazeRunner-like optimizer [135] and Interstellar-like optimizer [136] relative to the roof-line
peaks of the AlexNet and VGG-16 models on both the platforms (P1 and P2).

Comparison with the existing optimizers. Figure 5.8 presents the runtimes of optimized
mappings generated by Marvel, dMazeRunner-like optimizer [135], and Interstellar-like
optimizer [136] relative to the roof-line peaks of the AlexNet and VGG-16 models on
both the platforms. Since each model involves multiple CONV2D operations, we have
added the runtimes of the each CONV2D operator to present our evaluation at the level of
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Figure 5.9: Runtime and energy comparison of Marvel generated mappings with the popular map-
ping styles such as row-stationary (RS) from Eyeriss [40], weight-stationary from DLA [46],
output-stationary from ShiDianNao [145] for the AlexNet [64], VGG-16 [65], ResNet-50 [137],
MobileNet-V2 [138] models on both the platforms (P1 and P2).

DNN models. The Interstellar-like optimizer is almost equivalent to the brute-force explo-
ration except that it restricts exploiting parallelism along only input and output channels.
As a result, the evaluation using the Interstellar-like optimizer is really time-consuming
(multiple days for MobileNetV2 and ResNet50), and hence we restricted the comparison
to only AlexNet and VGG16 models. As can be observed from the Figure 5.8, Marvel
generated mappings are geometrically 2.35× and 1.15× faster compared to the mappings
obtained by the dMazeRunner-like optimizer and Interstellar-like optimizer, respectively.
The dMazeRunner-like optimizer focuses on exploiting parallelism along only output chan-
nels (in presence of unit batch size) to avoid inter-PE communication, and this results in
under-utilization of the PE array for both models. But, the Interstellar-like optimizer is
able to perform close to Marvel, because the number of input and output channels in these
models are larger (except at the initial layers). But, it can underperform for DNN models
such as UNet [153], where input and output channels are smaller and output width and
height are larger. Furthermore, our approach is able to identify mappings in seconds to
few minutes for each operator on a local machine, unlike the Interstellar-like optimizer
which takes almost 1-5 hours for each operator. We don’t compare the search time with the
dMazeRunner-like optimizer, because we haven’t implemented all the heuristic strategies,
for, e.g., exploring tiling factors that highly utilize (at-least 60 %) the scratchpad buffers.
Table 5.4 shows the impact of our decoupling and pruning strategies on the original search
space of mappings of the four models with an average reduction of O(1010) in the mapping
space.
Comparison with the popular mapping styles. Some of the state-of-the-art mapping
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Table 5.4: The statistics (min/avg/max) of the CONV2D mapping space in our evaluation and the
resultant mapping subspaces after decoupling and pruning strategies.

Variants
Search space size

Min Avg Max
Original search space

2.7×1017 9.4×1018 1.8×1019

Off-chip schedules search
7.3×108 3.6×1011 1.3×1012

space after decoupling
On-chip schedules search

2.9×107 2.4×1010 1.4×1011
space after decoupling
Off-chip schedules search

9.9×105 1.5×108 6.3×108
space after decoupling + pruning
On-chip schedules search

3.8×105 5.9×107 2.4×108
space after decoupling + pruning

styles are row-stationary (RS) from Eyeriss [40], weight-stationary from DLA [46], and
output-stationary from ShiDianNao [145]. In our evaluation, we encoded the above map-
ping styles in the form of parallelization and loop order constraints on the on-chip mapping
space of our decoupled approach. For instance, weight-stationary (DLA) mapping style in-
cludes parallelization across input and output channels with the loop iterators correspond-
ing to the weight tensor in the innermost positions of the loop orders. As can be observed
from Figure 5.9, the runtimes of Marvel generated mappings for all the models are only
1.31× and 1.10× higher relative to the roof-line peaks of all the models on both accelerator
platforms P1 and P2, respectively.

The Eyeriss-like mappings [40] exploit parallelism along output width and filter width
dimensions, whereas the ShiDianNao-like mappings [145] exploit along output width and
height. But, the extents of these dimensions are relatively small especially in modern DNN
models such as ResNet50 and MobileNetV2. Hence, these mappings are often resulted
in under-utilization of the PE array leading to higher runtimes compared to the roof-line
peak (e.g., 100.36× for Eyeriss-like mappings on platform P2). But these mappings exploit
popular row-stationary and output-stationary behavior leading to lower energy consump-
tion (e.g., 2.91× for Eyeriss-like mappings on platform P2) relative to the Marvel reported
energy-efficient mappings.

The DLA-like mappings exploit parallelism along input and output channels, and the
extent of these dimensions are sufficient enough to keep the PE array busy for most of
the layers of AlexNet, VGG16, and ResNet50 models. However, the MobileNetV2 model
has introduced depth-wise operators which lacks parallelism in the input channels. This
resulted in less performance of the DLA-like mapping compared to the roof-line peak, and
our approach exploited alternate dimensions (more than one) for the parallelism. However,
the DLA-like mappings exploit weight-stationary reuse behavior, and these DNN models
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have large number of weight parameters compared to other tensors. This resulted in only
1.10× higher energy consumption relative to the Marvel reported energy-efficient map-
pings.

Table 5.5: Two layers from VGG16 and MobileNetV2 for brief discussion on our approach gener-
ated mappings; Level-3 tile sizes and degree of parallelism are part of the mappings identified by
our approach on Platform P2.

Loop iterators
of CONV2D

CONV1
in VGG16

Bottleneck6 3 2
in MobileNetV2

Regular CONV2D Depth-wise separable
Loop
sizes

Level-3
tile sizes

Degree of
parallelism

Loop
sizes

Level-3
tile sizes

Degree of
parallelism

Batch(N) 1 1 1 1 1 1
Filters (K) 64 64 8 1 1 1

Input
channels (C) 3 3 1 576 64 32

Output
width (P) 222 111 37 5 5 5

Output
height (Q) 222 6 3 5 5 5

Filter
width (S) 3 3 1 3 3 1

Filter
height (R) 3 3 1 3 3 1

To deeply explain the mappings generated by our approach and its difference with re-
spect to the state-of-the-art mapping styles, we consider two convolutions, i.e., a regular
CONV2D from VGG16 and a depth-wise CONV2D from MobileNetV2, whose details are
shown in Table 5.5.
Impact of level-3 tile sizes. The CONV2D operator in VGG16 Layer 1 has higher output
width and height (P, Q) compared to the output and input channels (K, C). However, the
level-3 tile size corresponding to output height is shrinked to fit into the on-chip buffer with
maximum temporal reuse. As a result, our approach exploited parallelism along output
width (P) and filters (K) to utilize the PE array maximum. However, none of the state-
of-the-art mapping styles and also dMazeRunner-like/Interstellar-like optimizers exploit
parallelism along P and K dimensions.
Impact of modern operators. The modern DNN models such as MobileNetV2 have
introduced depth-wise CONV2D operators, and these operators reduce total number of
MAC operations by not performing reduction across input channels, there by sacrificing
arithmetic intensity. As a result, these operators have less parallelization opportunities and
are often bounded by NoC bandwidth. For example, the depth-wise CONV2D operator in
Table 5.5 have the value of K set to one and also the level-3 tile size of C is shrinked to a
smaller value to fit into the on-chip buffer with maximum temporal reuse. To fully leverage
the PE array, our approach generated mapping exploited parallelism along three dimensions
– Input channels (C), Output width (P), Output height (Q), where none of the prior state-of-
the-art mapping styles and dMazeRunner-like/Interstellar-like optimizers exploited more
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than two levels of parallelism. Furthermore, the performance of the generated mapping
was close to the roof-line peak, which is dominated by NoC bandwidth.

An overall performance (runtime) and energy comparison of Marvel generated map-
pings with respect to the prior state-of-the-art mapping strategies is shown in Figure 5.9.

5.7.2 Evaluation on GEMM

In this evaluation, we have considered GEMM workloads from the recent work in [154].
An interesting aspect of these workloads is that they are irregular in their shapes making
the rigid accelerators (e.g., TPUs) hard to reach their peak utilization [154]. A summary of
these workloads is shown in Table 5.6, where M, N, K refers to number of rows, columns
of first matrix followed by the columns of second matrix.

Table 5.6: Description of the GEMM workloads taken from the recent work in [154].

Workload Application Dimensions
M N K

GNMT Machine
Translation

128 2048 4096
320 3072 4096

1632 36548 1024
2048 4096 32

DeepBench General
Workload

1024 16 500000
35 8457 2560

Transformer Language
Understanding

31999 1024 84
84 1024 84

NCF Collaborative
Filtering

2048 1 128
256 256 2048

We translated the GEMM workloads into their equivalent CONV2D workloads for
the Interstellar-like and dMazeRunner-like optimizers, because their exploration strate-
gies are specific to the CONV2D workloads (e.g., parallelization strategies). Figure 5.10
presents the runtime of optimized mappings generated by Marvel, dMazeRunner-like op-
timizer [135], and Interstellar-like optimizer [136] relative to the roof-line peak of each
GEMM workload. The runtimes of Marvel generated mappings are only 1.24× and 1.10×
higher relative to the roof-line peaks of accelerator platforms P1 and P2 respectively,
thereby demonstrating the closeness of mappings obtained using our approach to the peak.
Furthermore, we observed that maximum reuse (spatial, temporal, spatio-temporal) is ex-
ploited only when all the dimensions of the GEMM operator are parallelized. Hence, Mar-
vel generated mappings included parallelization of the three dimensions to make the PE
array occupied along with exploiting maximum reuse. This is in contrast to other ap-
proaches, i.e., Interstellar-like optimizer focusing on parallelizing only (N, K) dimensions
and dMazeRunner-like optimizer focusing on parallelizing only (K) dimension. As a result,
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Marvel generated mappings are 6.87× and 1.81× faster compared to the mappings obtained
by the dMazeRunner-like optimizer and Interstellar-like optimizer for all the GEMM work-
loads on the both accelerator platforms.

5.7.3 Evaluation on MLP and LSTM

In this evaluation, we have considered the MLP and LSTM workloads from the Interstellar
work in [136], and a summary of these workloads are shown in Table 5.7.

Table 5.7: Description of the MLP and LSTM workloads taken from the Interstellar work in [136].

Network Layer Input channels Output channels

MLP-M
FC1 784 1000
FC2 1000 500
FC3 500 250

MLP-L
FC1 784 1500
FC2 1500 1000
FC3 1000 500

Network Embedding size Batch size
LSTM-M 500 128
LSTM-L 1000 128

RHN 1500 128

We translated the MLP workloads into CONV2D workloads for the Interstellar-like
and dMazeRunner-like optimizers. We also translated the LSTMs workloads into their
equivalent CONV2D workloads via first converting into GEMM workloads. For instance,
a LSTM workload with batch size as B and embedding size5 as E can be translated into a
GEMM workload with M being the batch size (B), N being the embedding size (E), and
K being the 2×E. Figure 5.10 presents the runtime of optimized mappings generated by
Marvel, dMazeRunner-like optimizer [135], and Interstellar-like optimizer [136] relative
to the roof-line peak of each workload in Table 5.7. Marvel generated mappings are 4.46×
and 1.22× faster compared to the mappings obtained by the dMazeRunner-like optimizer
and Interstellar-like optimizer for all the workloads on the both accelerator platforms. The
benefits compared to dMazeRunner-like optimizer is higher because of its parallelization
across only a single dimension (Embedding size in case of LSTM and Output channels in
case of MLP) and also exploring only limited loop orders for reuse. In addition, Marvel
is able to do better compared to Interstellar-like optimizer by exploring more levels of
parallelism to make the PE array occupied (e.g., only 1.04× higher relative to roof-line
peak on platform P2).

5Embedding size is the size of input and hidden vectors.
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Figure 5.10: Performance comparison of Marvel generated mappings with the mappings of
dMazeRunner-like optimizer [135], and Interstellar-like optimizer [136] relative to the roof-line
peaks of the GEMM workloads in Table 5.6 and LSTM, MLP in Table 5.7 on both the platforms
(P1 and P2).

5.8 Related Work

A major difference between the compilers for spatial accelerators and CPUs/GPUs is the
need for an “accurate” cost model for finding optimal mappings. This is because spatial
accelerators’ performance is sensitive to the mapping parameters, for, e.g., a small change
in the tile size or degree of parallelism would drastically change the latency or energy
efficiency numbers. Even though high-level frameworks such as TVM [76], TC [155],
PlaidML [156], Stripe [157], Polyhedral (Tiramisu [158]), and MLIR [159] have richer
expressibility than our MDC notation, none of these frameworks have accurate cost models
targeting flexible spatial accelerators. Also, it’s not clearer if accurate cost models can exist
for any operator expressed in their notations. An overview of the comparison of our MDC
notation with prior notations in terms of expressiveness, mapping notation, the presence
of accurate cost models for spatial accelerators is shown in Table 5.8. Frameworks such
as TVM, TC, PlaidML, Stripe, ISAMIR, Tiramisu, MLIR can represent interleaving of
operators resulting in imperfectly nested loops, but there doesn’t exist any accurate cost
models in these frameworks to explore interleaving on spatial accelerators.

In addition to Marvel supporting all the primitive operators supported by other frame-
works Figure 5.11, Marvel can also support operators having non-rectilinear iteration spaces
(e.g., Symmetric GEMM [160]), that none of the other frameworks in Figure 5.11 support.
Furthermore, a strong guarantee of our approach is that any operator conformable to the
MDC notation can leverage our compiler along with the underlying accurate cost-model.
This is in contrast to other frameworks for spatial accelerators such as TimeLoop [133] and
Interstellar [136], where there are no such guarantees.
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Table 5.8: Comparison of our MDC notation with prior compilers in terms of expressiveness, map-
ping notation, and the presence of accurate cost models.

Notation
Operator expressiveness Mapping

representation

Accurate cost
models for spatial

accelerators
Loop nest
structure

Array
subscripts

Iteration
domain

MDC Perfect Affine Affine Data-centric YES
TVM, TC,
PlaidML,

Stripe,
ISAMIR

Perfect/
Imperfect Affine Rectangular Loop-centric

NO
(*only for

limited scenarios [136])

Polyhedral
(e.g., Tiramisu)

Perfect/
Imperfect Affine Affine Loop-centric NO

Generic
loop nests

(e.g., MLIR)

Perfect/
Imperfect Any Any Loop-centric

NO
(*only for

limited scenarios [133])

Now, we discuss prior work only on compilers/mappers (shown in Figure 5.11) for find-
ing efficient mappings of DNN operators on to the spatial accelerators. Prior work [139,
40] focused on developing mappers specific to their architectures, for, e.g., mRNA map-
per [139] for the MAERI accelerator [144], Auto-TVM [76] for the GEMM core of the
VTA architecture [161] limiting their applicability to generic spatial accelerators. Prior
work such as Zhang et al. [132], Ma et al. [131] focused on spatial accelerators without
L1 buffers inside a PE, again limiting their mapping space formulation. Furthermore, they
don’t employ accurate cost models and focus only on optimizing for runtime.

In addition, other prior works such as Interstellar [136], dMazeRunner [135] fixed cer-
tain aspects of mapping space such as choice of parallel loops, loop orders, and these
choices may not reflect the efficient mappings for a wide variety of DNN operators. To the
best of our knowledge, TimeLoop [133] is the only framework that considers all aspects of
a mapping for a fully flexible spatial accelerator. However, it employs either an exhaustive
linear search or a random sampling-based heuristic to explore the search space. In contrast
to all of the above works, our approach considers all the aspects of mapping space and uses
the decoupled strategy to efficiency navigate the mapping space.

A key novelty of our work is the formalization of MDC conformable operators using
the four rules defined in Section 5.4, and with the conformability, our approach always
generates a correct set of MDC directives corresponding to a loop nest mapping of the
operator. The prior work introducing MDC directives [134] doesn’t have any formalization
and also any correctness checker over the usage of MDC directives. Further, the prior-work
is limited to hardware DSE and doesn’t have any mapping explorer, unlike our approach.
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Compiler/ 
Mapper

Target  
architecture Target goal Accurate cost  

models

Operators 
supported/ 
evaluated

Level-1  
Tiling Level-2 tiling Level-3 tiling

Approach
Tile sizes Parallel 

loops
Degree of 
parallelism

Inter-tile 
order Tile sizes Inter-tile 

order

mRNA MAERI Runtime, 
Energy YES CONV2D NA YES YES YES NO NO Bruteforce

Auto-TVM VTA Runtime NO CNNs NA YES YES YES YES YES Annealing 
Zhang et al. Spatial Runtime NO CONV2D NA FIXED YES FIXED YES YES Bruteforce

Ma et al. Spatial Runtime NO CONV2D NA FIXED YES FIXED YES YES Bruteforce
dMaze 
Runner Spatial Runtime, 

Energy YES CONV2D YES FIXED YES FIXED YES FIXED Bruteforce

Interstellar Spatial Runtime, 
Energy YES CONV2D, 

LSTM, MLP YES FIXED YES YES YES YES Bruteforce

TimeLoop Spatial Runtime, 
Energy YES DeepBench, 

CNNs YES YES YES YES YES YES Brute-force,

random sampling

Marvel Spatial Runtime, 
Energy YES Any MDC 

Conformable YES YES YES YES YES YES Decoupled

Figure 5.11: Comparison of Marvel with prior compiler approaches for spatial accelerators
(mRNA [139], Zhang et al. [132], Ma et al. [131], Auto-TVM [76], dMazeRunner [135], Inter-
stellar [136], TimeLoop [133]) for the mapping space exploration of DNN operators. Our approach
(Marvel) supports any operator conformable with the MDC notation.

5.9 Summary

In this chapter, we provide a formal understanding of DNN operators whose mappings on
flexible templated spatial accelerators can be described in the MDC notation by introducing
a set of rules over the abstract loop nest form of the operators. Furthermore, we introduce a
transformation for translating mappings into the MDC notation for exploring the mapping
space. Then, we also proposed a decoupled off-chip/on-chip approach that decomposes the
mapping space into off-chip and on-chip subspaces, and first optimizes the off-chip sub-
space followed by the on-chip subspace. We implemented our decoupled approach in a
tool called Marvel, and a major benefit of our approach is that it is applicable to any DNN
operator conformable with the MDC notation for any templated flexible spatial accelera-
tor. Our approach reduced the search space of CONV2D operators from four major DNN
models from 9.4 × 1018 to 1.5 × 108 + 5.9 × 108 u 2.1 × 108, which is a reduction factor of
ten billion (Table 5.4), while generating mappings that demonstrate a geometric mean per-
formance improvement of 10.25× higher throughput and 2.01× lower energy consumption
compared with three state-of-the-art mapping styles from past work.

In the next chapter, we focus on a specific instantiation of spatial architectures for
machine learning applications, i.e., Xilinx AI Engine, and we describe our advances re-
quired in compiler analysis, transformations, and code generation required to generate
high-performant code for tensor convolutions on the AI Engine.

93



CHAPTER 6
VYASA: A HIGH-PERFORMANCE VECTORIZING COMPILER FOR TENSOR

CONVOLUTIONS ON THE XILINX AI ENGINE

6.1 Abstract

Xilinx’s AI Engine is a recent industry example of energy-efficient vector processing that
includes novel support for 2D SIMD datapaths and shuffle interconnection network. The
current approach to programming the AI Engine relies on a C/C++ API for vector intrin-
sics. While an advance over assembly-level programming, it requires the programmer to
specify a number of low-level operations based on detailed knowledge of the hardware.
To address these challenges, we introduce Vyasa, a new programming system that extends
the Halide DSL compiler to automatically generate code for the AI Engine. We evaluated
Vyasa on 36 CONV2D and 6 CONV3D workloads, and achieved geometric means of 7.6
and 23.3 MACs/cycle for 32-bit and 16-bit operands (which represent 95.9% and 72.8%
of the peak performance respectively). For 4 of these workloads for which expert-written
codes were available to us, Vyasa demonstrated a geometric mean performance improve-
ment of 1.10× with 50× smaller code relative to the expert-written codes.

6.2 Introduction

It is widely recognized that a major disruption is under way in computer hardware as pro-
cessors strive to extend, and go beyond, the end-game of Moore’s Law. Unlike previous
generations of hardware evolution, these “extreme heterogeneity” systems will have a pro-
found impact on future software. As part of these trends, there is a strong resurgence of
interest in improving vector processing (SIMD) units due to the significant energy effi-
ciency benefits of using SIMD parallelism. These benefits increase with widening SIMD
vectors, reaching vector register lengths of 2048 bits in the scalable vector extension of
the Armv8 architecture [48]. Furthermore, there is an emphasis on specializing SIMD
units to further improve energy efficiency benefits for specific domains such as Machine
learning, Computer Vision, and 5G Wireless. An important specialization, which is re-
ferred to as “2D vector SIMD datapath” [31, 32, 33], is the ability of each vector lane
to execute more than one scalar operation and to chain the results from one operation to
another. Another specialization includes the removal of expensive data permutation units
(e.g., shuffle units) [34, 35] and instead introduce sophisticated, programmable intercon-
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nection networks (a.k.a shuffle networks) between the SIMD datapath and vector register
file to support the required data permutation patterns [36, 33].

A recent industry example with these specializations is the Xilinx Versal AI Engine [49],
a high-performance VLIW SIMD core which can deliver performance comparable to tradi-
tional FPGA solutions for Computer Vision, Deep Learning, and 5G wireless domains, but
with 50% less power consumption and up to eight times more compute capacity per silicon
area [49]. AI Engine cores are tightly integrated with programmable logic in Xilinx Versal
ACAP devices to form a seamless heterogeneous compute platform [162, 7] applicable to a
wide variety of HPC applications. Furthermore, the Versal AI Engine series VC1902 has a
total of 400 AI Engines that together delivers a peak performance of 6.4 TOPS, 25.6 TOPS
and 102.4 TOPS for 32-bit, 16-bit, and 8-bit operands, respectively [7].

Tensor convolution is a widely used mathematical operation in these domains, and it is
becoming increasingly important with the rise of its use in image processing workflows [70,
71, 72] and with the proliferation of deep learning models [3, 66, 67, 68] in data centers,
edge, and mobile devices. There has been a lot of prior work in optimizing tensor con-
volutions for a variety of target hardware devices such as CPUs [70, 71, 163], GPUs [70,
164, 163], FPGAs [132, 131, 139, 165, 163], and Dataflow accelerators [139, 166, 167,
43]. However, even for well understood applications like convolution, generating the best
code for new high-performance processor architectures from high-level descriptions can be
challenging. This work demonstrates the ability to automatically optimize tensor convolu-
tions for the AI Engine and to obtain close to the peak performance for various workloads
while using a high-level programming model, rather than low-level C/C++ intrinsics.
Challenges. Achieving peak performance on the AI Engine requires leveraging several
architectural features to maximize vector datapath occupancy during program execution.
Unlike standard SIMD architectures which operate on 1D vectors, the AI Engine archi-
tecture includes 2D vector operations for some datatypes which conceptually implement
the fusion of several 1D vector operations. Also, unlike other architectures, the AI Engine
doesn’t implement direct support for unaligned loads, scalar broadcasts, and data manip-
ulation operations. Instead, the AI Engine architecture includes a novel shuffle network
which selects desired elements of a vector register for a vector operation instead of explic-
itly shuffling and storing them into another vector register. In order to effectively leverage
these features, the layout of data in memory must match the capabilities of the shuffle
network.

Existing AI Engine compilers do not perform auto-vectorization, leaving it to expert
programmers to explicitly write high-performance vector code using architectural intrinsic
functions. Optimizing programs in this way can be time-consuming even for experts. At
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the same time, there are a wide variety of tensor convolution operators in common use, for
instance, deep neural networks may contain regular 2D convolutions, depth-wise convo-
lutions, and point-wise convolutions. Even within the same network, the shape of tensor
data can vary radically between the early and late layers in DNN models. We find that no
single optimization strategy is an optimal choice for all these scenarios. Reducing the need
for manual optimization and quickly adapting to new tensor operations through automatic
optimization avoids these problems.

With all these challenges, the overall goal of our work is to automate the generation

of high-performance vector code for tensor convolutions based on their variations and

shapes, while exploiting the unique capabilities of the Xilinx AI Engine without requiring

manual effort in development and tuning. Achieving this goal requires significant loop-
level reuse analysis, code transformation, and data-layout transformation, along with op-
timized low-level code generation taking into account the shuffle network and memory
optimizations such as vector register reuse (including partial reuse) [168, 169].

The main technical contributions of this work are briefly described below:

• We introduce a new domain-specific intermediate representation called Triplet to
symbolically capture the loop body of a tensor convolution, and to simplify analyses
and transformations required to generate high-performance code for the AI Engine.

• We propose a novel multi-step compiler approach which includes analyses and trans-
formations to 1) exploit the 2D SIMD datapath by identifying multiple 1D logical
vector operations that can be legally fused, 2) realize unaligned loads, scalar broad-
casts, data manipulation using the shuffle network, 3) improve memory utilization by
performing vector register reuse and also loop optimizations, and 4) generate code
that is more amenable to enabling VLIW instruction scheduling for the AI Engine.

• We created a new tool, Vyasa1, to implement our multi-step compiler approach.
Vyasa is built on the Halide framework [70] and includes extensions needed for the
AI Engine that are not supported by Halide. Given a tensor convolution specifica-
tion in the Halide language and workload sizes, Vyasa generates high-performance
C-code with vector intrinsics for the AI Engine.

• We evaluated Vyasa on 36 CONV2D and 6 CONV3D workloads using a cycle-
accurate simulator2. Our results show geometric means of 7.6 and 23.3 MACs/-

1Vyasa means “compiler” in the Sanskrit language, and also refers to the sage who first compiled the
Mahabharata.

2Since the AI Engine architecture was developed for real-time processing applications which require
deterministic performance, the simulator results are reliably correlated with actual performance of the AI

96



cycle for 32-bit and 16-bit operands (which represent 95.9% and 72.8% of the peak
performance respectively). For four of these workloads for which expert-written im-
plementations were available to us, Vyasa achieved a geometric mean performance
improvement of 1.10× from Halide code that is around 50× smaller than the expert-
written C/C++ code.

6.3 Background

In this section, we start with a brief overview of tensor convolutions, and then we briefly
summarize the key architectural features of the Xilinx Versal AI Engine.

6.3.1 Tensor Convolutions

A convolution is a mathematical operation which computes the amount of overlap of a func-
tion g as it is shifted over another function f , and it is symbolically represented as f ◦ g.
In this section, we restrict our attention to describing CONV2D, a popular convolution
operator widely used in Deep learning [64, 65, 3, 66, 67, 68] and Computer Vision [69,
70, 71, 72]. In these domains, the function f and g are referred to as the “input” ten-
sor (a.k.a image/activations) and “weight” tensor (a.k.a filters/kernels), respectively. The
CONV2D deals with three four-dimensional tensors, i.e., Output (O), Weight (W), and
Input (I), whose dimensions are described below.

Tensor Dim1 Dim2 Dim3 Dim4
Output (O) Width (X) Height (Y) Channels (K) Batch (N)
Weight (W) Width (R) Height (S) Channels (C) Batch (K)

Input (I) Width (X’) Height (Y’) Channels (C) Batch (N)

The mathematical expression of the CONV2D operations is shown below, where f

refers to stride factor.

O(x, y, k, n) =

C∑
c

S∑
s

R∑
r

W(r, s, c, k)

× I(x × f + r, y × f + s, c, n)

The convolutions used in Computer Vision are special cases of the CONV2D operator,
where each tensor has only the first two dimensions (width and height) and stride factor set
to one. However, there exist a wide variety of filter sizes (ranging from 2 to 11) used in

Engine hardware.
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many different image processing operators, such as Gaussian smoothing and edge detec-
tion [69].

A wide variety of other specialized variations of the CONV2D operator are used in Con-
volutional Neural Networks such as point-wise, depth-wise separable, and spatially sepa-
rable convolutions. These variations can be viewed as constraints on the regular CONV2D
operator, and are shown below.

Operator Constraints on CONV2D
Point-wise (PW) Filter width = Filter height = 1

Fully-connected (FC) Filter width = Input width
Filter height = Input height

Spatially separable (SS) Filter width = 1 or Filter height = 1
Depth-wise separable (DS) Input channels = Filter channels = 1

Even though we briefly described the CONV2D operator and its variations, our ap-
proach is applicable to other convolution operators such as CONV1D and CONV3D.

6.3.2 Xilinx AI Engine

Driven by the performance and energy efficiency requirements of many computing appli-
cations, Xilinx introduced Versal Advanced Compute Acceleration Platform (ACAP) [162,
7], a fully software-programmable, heterogeneous compute platform. The Versal platform
consists of three types of programmable processors – Scalar Engines (CPUs), Adaptable
Engines (Programmable Logic), and an array of Intelligent Engines (AI Engines) [7].
In this work, we focus on AI Engines, which are specialized SIMD and VLIW high-
performance processors for compute-intensive applications such as computer vision, ma-
chine learning workloads, and 5G wireless. AI Engines are highly energy efficient com-
pared to FPGAs and can deliver up to 8X silicon compute density at 50% the power con-
sumption of traditional FPGA solutions [49].

An AI Engine includes a 2D SIMD datapath for fixed-point vector operations (our fo-
cus), a 1D SIMD datapath for floating-point vector operations, and a scalar unit for scalar
operations. Each AI Engine also has access to 128KB scratchpad (a.k.a data/local) mem-
ory, a 16KB program memory, and a 256B vector register file (a total of 16 registers with
each size being 128 bits). These high-performance AI Engines are programmed using the
C/C++ programming language with optional pragmas. A simplified overview of the key
architectural features of the AI Engine core is shown in Figure 6.1, and these features are
briefly described below.
1) Two-dimensional SIMD Datapath. The fixed-point vector unit of the AI Engine is
a two-dimensional SIMD datapath, and vector operations on the 2D SIMD datapath are
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Figure 6.1: A pictorial overview of the key architectural features of the Xilinx AI Engine, i.e., 2D
vector SIMD datapath and shuffle network.

described using lanes/rows and columns. The number of lanes corresponds to the number
of output values generated from the vector operation. The number of columns is the number
of operations that are done per output lane, with each of the results being reduced together.
This technique of executing back to back dependent scalar operations along a vector lane
is popularly known as operation chaining [31] and can improve energy efficiency by not
writing intermediate values back to the register file. Furthermore, the number of columns
is dependent on the operand precision. Operations on 32-bit types are organized as 8 lanes
with 1 column, without internal reduction. Operations on 16-bit types are organized as
either 16 lanes with 2 columns or 8 lanes with 4 columns. Operations on 8-bit types are
organized as 16 lanes with 8 columns. As a result, the 2D datapath can perform either 8
MACs on 32-bit inputs, 32 MACs on 16-bit input, or 128 MACs on 8-bit input per cycle.
2) Shuffle network. A key novelty of the AI Engine architecture is its shuffle network,
a flexible interconnection network between the 2D SIMD datapath and vector register file
to allow flexible data selection from the input vector registers for the multipliers of each
lane and column of the SIMD datapath. The ability to configure the shuffle network for
each vector operation is exposed to programmers via the arguments of the vector intrinsic
functions. Unlike the data manipulation units in traditional SIMD units, the data selection
using the shuffle network over a vector register can only be used during a vector operation.
The granularity of data selection using the shuffle network on the vector registers is 32b, and
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so the network allows full flexibility for making data selection, replication, and permutation
on vectors of 32b data types. However, for data types of smaller sizes such as 16b and 8b
data types, the shuffle network imposes further constraints on data selection.

Vector loads and stores in the AI Engine must be aligned to 128-bit data memory bound-
aries. The AI Engine does not implement unaligned loads or scalar broadcasts. Instead,
these operations are typically realized/implemented using a combination of aligned loads
and configuration of the shuffle network.
3) VLIW capabilities. The AI Engine has support for very long instruction word (VLIW)
that can provide up to 6-way instruction parallelism to hide long instruction latencies. The
VLIW instruction includes two scalar operations, two vector load operations, one vec-
tor store operation, and one fixed/floating-point vector operation. The AI Engine com-
pilers have support for automatic software pipelining [50] of innermost loops to exploit
instruction-level parallelism.

6.4 Our Approach

In this section, we introduce our approach to generating high-performance vector code
for a given high-level specification of tensor convolution and its workload sizes that fit
into a single AI Engine’s data memory. These vector codes are intended to execute on
a single AI Engine and will be integrated by a high-level compiler to run larger tensor
convolutions across multiple AI Engines. Our approach is summarized in Figure 6.2 and
is implemented in a tool called Vyasa. The tool is developed as an extension to the Halide
framework [70]. Our approach begins with an auto-tuner taking the specification of a tensor
convolution in the Halide language and also the corresponding workload sizes. Then, the
auto-tuner iterates through each possible schedule in the space of loop transformations and
data-layouts, and invokes our multi-step compiler approach to generate high-performance
vector c-code corresponding to the schedule. Then, our approach evaluates the generated
code using a cycle-accurate simulation of the AI Engine, and chooses the best one among
all schedules to finally emit as the performant output code.

Our multi-step compiler approach starts from the specification of a tensor convolution,
a schedule from the auto-tuner, and workload sizes. It consists of the following steps:

1. Transforming the loop body of the tensor convolution operation in the Halide IR
(after lowering) into our symbolic triplet representation for convenience in doing
analyses, transformations, and code generation,

2. Performing ’lazy stores’ optimization by accumulating all partial (intermediate) re-
sults of an output before generating a store to reduce the memory traffic,
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Figure 6.2: Workflow of our approach (Vyasa) which is implemented as an extension to the Halide
framework [70].

3. Exploiting vector register reuse, and realizing unaligned loads and scalar broadcast
operations using the shuffle (interconnection) network,

4. Identifying suitable 1D logical vector operations (multiplications) that contribute to
same output through accumulation/reduction and fusing them into operations match-
ing the 2D SIMD datapath,

5. Interleaving load and store operations with vector operations to make it easy for the
AI Engine compilers to perform VLIW instruction scheduling,

6. Generating C-code with vector intrinsics.

6.4.1 Translating into Triplet Representation

In general, tensor convolutions are specified/implemented as multi-dimensional perfectly
nested loops, where each statement of the loop body has two aspects – 1) A group of
multiply-and-accumulate (MAC) operations over input and weight tensors, and 2) An up-
date (reduction) operation to the output tensor Since each statement in the convolution loop
body performs a reduction operation and the reduction is commutative, the order of each
statements doesn’t impact its correctness. Hence, a representation holding information for
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1 Buffer<int16> I(W,H); Buffer<int16> W(4,3);

2 Var x, y; RDom r(4, 3); Func O; //output

4 //(a) Description of the convolution computation

5 O(x,y) += W(r.x, r.y) * I(x+r.x, y+r.y);

7 //(b) A sample schedule: Unrolling reduction loops

8 //Vectorizing loop corresponding to image width

9 O.update().unroll(r.x, 4).unroll(r.y,3)

10 .vectorize(x, 16);

12 //(c) Intermediate code after lowering

13 for y:

14 for x: (vectorized)

15 O(x:x+15,y) += W(0,0) * I(x:x+15,y);

16 O(x:x+15,y) += W(1,0) * I(x+1:x+16,y);

17 O(x:x+15,y) += W(2,0) * I(x+2:x+17,y);

18 O(x:x+15,y) += W(3,0) * I(x+3:x+18,y);

19 ......

Figure 6.3: Algorithmic description of the convolution of a 4x3 filter over an input 2D image in the
Halide language [70]. A(a:b,c) is a short hand vector notation for denoting a contiguous slice from
A(a,c) to A(b,c) in one direction.

each statement about the two major aspects described above is sufficient to capture the
body precisely. We call this representation a “triplet” since it holds information about the
access patterns of the two operands of each multiplication and the update operand of each
statement symbolically.

Figure 6.4: A pictorial overview of the convolution of 4x3 filter based on the schedule described
in Figure 6.3(b) at the loop iterations x = 0 and y = 0.
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We consider the convolution of a filter with size 4x3 on an input with size W x H as a
running example (shown in Figure 6.3(a)) to illustrate each step of our compiler approach.
A sample schedule for the above convolution is shown in Figure 6.3(b), which refers to
unrolling loops corresponding to filter dimensions (r.x, r.y) and vectorizing the loop-x
with vector length as 16. A pictorial overview of the computation at the loop iterations x =

0, y = 0 is shown in Figure 6.4.
After lowering the convolution specification using the schedule into the Halide IR, the

first step in our approach is to translate the convolution loop body into our triplet represen-
tation. For instance, the triplet representation of the loop body in Figure 6.3(c) is shown in
Table 6.1, where each row in the table symbolically captures the access patterns of multi-
plication operands and update operands of a statement in the loop body.

Table 6.1: Triplet representation of the loop body in Figure 6.3(c)

Update Operation
Operand

MAC Operations
Operand1 Operand2

O(x:x+15, y) W(0, 0) I(x:x+15, y)

O(x:x+15, y) W(1, 0) I(x+1:x+16, y)

O(x:x+15, y) W(2, 0) I(x+2:x+17, y)

O(x:x+15, y) W(3, 0) I(x+3:x+18, y)

.. .. ..

6.4.2 Lazy Stores Optimization

An approach to code generation based on the triplet representation involves generating
a vector store for each row of the representation. But this code generation can result in
immediately writing multiplication results to the data memory causing more traffic. We
introduce “lazy stores” optimization to delay writing the multiplication results of an out-
put until there are no operations that can contribute to output. The optimization works by
grouping all the rows of the triplet representation contributing to the same output. The ben-
efits of the optimization can be observed in the presence of multiple statements in the loop
body contributing to the same output. An example of such behavior is seen in Table 6.1,
where all the statements contribute to the same output (O(x:x+15,y)), and all these state-
ments can be grouped into a single group (Table 6.2). Now, the code generation involves
generating a single vector store for each group, instead of generating for each row of the
triplet representation.
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Table 6.2: Triplet representation after the lazy stores optimization

Update Operation
Operand

MAC Operations
Operand1 Operand2

O(x:x+15, y)

W(0, 0) I(x:x+15, y)

W(1, 0) I(x+1:x+16, y)

W(2, 0) I(x+2:x+17, y)

W(3, 0) I(x+3:x+18, y)

.. ..

6.4.3 Exploiting Vector Register Reuse & Realizing Unaligned Loads and Scalar Broadcast

Our approach leverages the AI Engine architecture’s unique shuffle network to realize un-
aligned vector loads and scalar broadcast operations which are common in vectorization of
tensor convolutions. Our approach further uses the network to exploit the vector register
reuse opportunities.
1) Realizing unaligned vector loads. Simple vectorization of tensor convolutions often
result in unaligned vector loads. For example, if the vector load (I(x:x+15,y)) in Fig-
ure 6.3 is aligned to the boundary, then the subsequent vector loads such as I(x+1:x+16,y)
are unaligned. Prior work on vectorization for SIMD architectures having no unaligned
load/store support address this by generating two adjacent aligned loads covering the re-
quired load and using data manipulation/shuffle (register-to-register) instructions to realize
an unaligned vector load [169]. Since the AI Engine architecture doesn’t support unaligned
loads or shuffle instructions, an alternative solution is necessary. Our approach leverages
the AI Engine architecture support for grouping vector registers into a larger vector regis-
ter. Then, our approach constructs a larger aligned vector load which subsumes the required
unaligned load and selects the data corresponding to the original unaligned vector load us-
ing the shuffle network. For instance, the unaligned vector load I(x+1:x+16,y) can be
realized through a larger aligned vector load I(x:x+31,y) and appropriate data selection
parameters during vector operations on the load.
2) Exploiting vector register reuse. Tensor convolutions often exhibit significant data
reuse between vector loads. For instance, the two vector loads I(x:x+15,y) and I(x+1:x+16,y)
have 15 data elements in common. Exploiting vector register reuse by reusing those com-
mon elements instead of fetching again from the data memory is important to reduce mem-
ory traffic and achieve better performance. Our approach groups individual vector loads
having such reuse and constructs a larger aligned vector load that subsumes the individual
vector loads having reuse. During the vector operations, the individual vector loads are
realized through appropriate data selection on the larger vector using the shuffle network.

Our approach implements the above idea by constructing a reuse graph, an undirected
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graph where each node denotes a vector load in the triplet representation and an edge is
constructed between two nodes if they have at least one common element between them,
i.e., presence of a reuse. In the current approach, we don’t associate any weights to the
edges of the reuse graph, and we briefly commented on the benefits of adding weights later
in the section. The reuse graph corresponding to the vector loads of the tensor I in Ta-
ble 6.2 is shown in Figure 6.5, for instance, nodes I(x:x+15,y) and I(x+1:x+16,y)
corresponds to two vector loads and the edge between them denotes the presence of com-
mon elements/reuse.

Figure 6.5: Reuse graph corresponding to the vector loads of the tensor I in Table 6.2, and its
connected components to construct larger vector loads.

After constructing the reuse graph, our approach identifies connected components in
the reuse graph, where each component represents a larger vector load that subsumes
the individual vector loads in that component. For instance, the connected component
I(x:x+31,y) in Figure 6.5 represents a larger vector load subsuming the vector loads
I(x:x+15,y), I(x+1:x+16,y), I(x+2:x+17,y), and I(x+3:x+18,y). Since our ap-
proach hasn’t yet fused the logical 1D vector operations to exploit all columns of the 2D
SIMD datapath, computing the data selection parameters is deferred to a later step (Sec-
tion 6.4.4). After replacing each individual vector load with its corresponding larger load,
the running example results in having only three larger vector loads instead of twelve indi-
vidual vector loads for the tensor I.

Our approach currently reports a compilation error if the size of a connected compo-
nent is larger than the maximum logical vector register size, because our approach maps
a connected component to a larger aligned vector load subsuming individual vector loads.
However, our approach can be enhanced by partitioning the connected component by mak-
ing sure that the individual vector loads are only part of a single partition of the connected
component. The edges of the reuse graph can be annotated with the common elements as
the weights to further enhance the partitioning approach.
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3) Realizing scalar broadcasts. Similar to unaligned vector loads, vectorization of tensor
convolutions involve scalar operands and require the support for scalar to vector broadcast
operation, for, e.g., the scalar operand W(0,0) in Table 6.2. A naive approach to realize
the broadcast operation of a scalar operand is by loading an aligned vector covering the
operand and then using the shuffle network to select the the operand for all the lanes. A
downside of the above approach is that it may result in loading an entire vector while using
only one value fetched from memory.

The scalar operands in the tensor convolutions typically exhibit significant spatial lo-
cality, e.g., the scalar operands such as W(0,0) and W(1,0) in Table 6.2 are contiguous in
the data memory. Similar to our approach in exploiting vector register reuse, we construct
another reuse graph to identify scalar operands that are adjacent in data memory and can
be subsumed as part of a single vector load. For instance, the operands W(0,0), W(1,0),
(2,0), W(3,0) can be realized over a vector load (say V2) of W(0:7, 0).

We represent the data selection of a set of values from a vector register using the shuffle
network during a vector operation as SELECT(V, {si j})) where V represents the vector reg-
ister and si j denotes the index of the required element in the register V for the ith lane and jth

column multiplier in the 2D SIMD datapath. Our approach defers the computation of data
selection parameters to the next step. The triplet representation after realizing the unaligned
loads, scalar broadcasts, and exploiting vector register reuse is shown in Table 6.3.

Table 6.3: Triplet representation after addressing unaligned loads, scalar broadcast, and exploiting
vector register reuse.

Update Operation
Operand

MAC Operations
Operand1 Operand2

O(x:x+15, y)

SELECT(V2, { }) SELECT(V1, { })

SELECT(V2, { }) SELECT(V1, { })

SELECT(V2, { }) SELECT(V1, { })

SELECT(V2, { }) SELECT(V1, { })

.. ..

6.4.4 2D Vector SIMD Datapath

A key distinguishing feature of the AI Engine relative to the traditional SIMD units is
the presence of a two-dimensional SIMD datapath which performs reduction across all
columns of a SIMD lane. A single 1D logical vector operation can occupy a single col-
umn of 2D datapath, but the vector operations on the 2D SIMD datapath require using
all the columns of the datapath and don’t allow partial utilization. Hence, our approach
identifies and logically groups (fusing) all suitable 1D logical vector operations that con-
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tribute to the same output through accumulation/reduction and use the same set of vector
register operands. The identification is done by searching in the triplet representation for
operations having the same update operand and the same set of vector registers as multipli-
cation operands. Finally, our approach partitions the logical groups based on the number
of columns available for the given operand type and also constraints imposed by the shuffle
network on the data selection over vector register operands. If the data selection required
for the operands of fused vector operations is incompatible with the constraints of the shuf-
fle network, then our approach generates a compilation error and prunes that candidate code
variant.

Figure 6.6: An overview of the two fused vector operations (a and b) over the vector registers V1,
V2 for input and weights, respectively of the running example shown in Table 6.2 at x=0 and y=0.
The shuffle network of the AI Engine helps each multiplier of the 16 lanes and 2 columns of the 2D
SIMD datapath to choose required elements from the vector registers.

There are four valid fusible logical 1D operations for each row of the filter in Table 6.2,
our approach groups them into two fused vector operations whose overview is described
in Figure 6.6. Furthermore, the triplet representation after fusing the logical 1D vector
operations is shown in Table 6.4.
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Table 6.4: Triplet representation after fusing the logical 1D vector multiplications and finding the
data selection parameters

Update operation
operand

MAC Operations (after fusing)
Operand1 Operand2

O(x:x+15,y)

SELECT(V2, {j}) SELECT(V1, {i+j})

SELECT(V2, {j+2}) SELECT(V1, {i+j+2})

.. ..

6.4.5 Code Generation

Our approach extends the code generation capabilities in the Halide [70] by implementing
a code generator for the triplet representation to generate explicitly vectorized code using
AI Engine intrinsic functions. A naive approach to code generation can be implemented
by first emitting all vector loads, followed by all vector MAC operation, and then finally
all vector stores. However, this naive approach results in variables (loads) having large live
ranges, possibly leading to register spills and preventing software pipelining. Furthermore,
optimization of memory accesses can be challenging for the downstream compilers only
given the generated intrinsic code. Hence, our approach reorders memory accesses and
interleaves them with vector MAC operations during the code generation process to reduce
the live range of each variable. This process is relatively easy given the information about
memory access patterns in Halide and helps the downstream compilers to improve packing
of stores, loads, and vector MACs into VLIW instructions. A snippet of the final code
generated by our approach with interleaving of loads, vector operations, and stores over the
running example is shown in Figure 6.7.

6.4.6 Auto-tuner

Steps 1-5 in our multi-step compiler approach generates the vectorized code for a given
specification of tensor convolution, a schedule from the auto-tuner, and workload sizes. The
auto-tuning capabilities of the Halide framework support only multi-staged pipelines [170,
171], but our focus is only on a single stage for the convolution. Hence, we implemented
custom auto-tuner in our approach exploring all possible schedules to find the best schedule
for a given convolution specification and the workload sizes. The search space of schedules
includes loop nest and data-layout optimizations.
Search space. The space of loop transformations includes loop interchange, loop unroll
and jamming, and the choice of loop for vectorization. The space of data-layout optimiza-
tions includes dimension permutation and data tiling.
Exploration. Our approach applies the following pruning strategies: 1) unrolling of reduc-
tion loops to avoid memory traffic in writing and reading intermediate (partial) results, and
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1 //Generated code

2 for(int y=0; y < Y; y++)

3 for(int x=0; x < X; x+=16) {

4 V1 = VLOAD(I,x:x+31,y);

5 V2 = VLOAD(W,0:7);

6 V3 = VMUL(V2, SELECT(V2, {j}),

7 V1, SELECT(V1, {i+j}));

8 V3 = VMAC(V3, V2, SELECT(V2,{j+2}),

9 V1, SELECT(V1,{i+j+2}}));

10 V4 = VLOAD(I,x:x+31,y+1);

11 V3 = VMAC(V3, V2, SELECT(V4, {j+4}),

12 V1, SELECT(V1, {i+j}));

13 V3 = VMAC(V3, V2, SELECT(V4,{j+6}),

14 V1, SELECT(V1,{i+j+2}}));

15 ....

16 VSTORE(V2, O, x:x+15,y);

17 }

Figure 6.7: A snippet of the generated 16-bit vector code for the running example in Figure 6.3.
VLOAD/VMUL/VMAC/VSTORE refers to vector load, vector multiplication, vector multiply-and-
accumulate, and vector store. SELECT symbolically represents the data selection over a vector
register for the ith row and jth column of 2D datapath multipliers.

2) applying bounds on the unroll and jam factors to avoid code size explosion (AI Engine
has only 16KB program memory) and also to avoid longer compilation times. Our auto-
tuner evaluates each point in the pruned search space by generating the vectorized C-code,
compiling with the AI Engine compiler, and executing it using a cycle-accurate architec-
ture simulator. With performance as the primary optimization goal, our approach obtained
a geometric mean performance improvement of 1.10× fewer cycles than the expert-written
and tuned codes available for four workloads, showing that automatic exploration can find
useful design points which are not obvious to humans.

The auto-tuner of our framework can be enhanced with extensions to our Marvel ap-
proach (Chapter 5) and MAESTRO cost model [134] to identify the performant mappings
in the mapping space and use our multi-step compiler approach only for performant map-
pings to reduce overall auto-tuning time.

6.5 Experiments

We evaluated our approach over a total of 36 workloads involving a wide variety of oper-
ators and variations of CONV2D and CONV3D over two operand precisions (32-bit and
16-bit) on a single AI Engine. Each workload represents a unique combination of a convo-
lution operation, tensor shapes, and operand precision. The configuration is shown in Table
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6.5 and includes a 128KB local memory pre-loaded with all the data required for the eval-
uation of each workload. The configuration also includes a vector register file of size 256B
(a total of 16 registers with each size as 128 bits) in between the SIMD datapath and the
local memory. We used the AI Engine’s cycle-accurate simulator to evaluate the function-
ality and performance of our generated codes. We define the performance (MACs/Cycle)
of an implementation of a tensor convolution as the total number of MAC operations in the
convolution divided by the total number of execution cycles taken by the implementation.

Table 6.5: The AI Engine configuration used in our evaluation.

Parameter 32-bit 16-bit
2D SIMD data path 8 x 1 16 x 2

Peak compute 8 MACs/cycle 32 MACs/cycle
Scratchpad memory 128 KB @ 96B/cycle

Scratchpad memory ports 32B 2 read and 1 write
Vector register file 256 B

6.5.1 CONV2D in Computer Vision

In the following experiments, we compare two experimental variants: 1) Code written by
an expert (for 3×3 and 5×5 filters) available as part of the Xilinx’s AI Engine compiler
infrastructure, 2) Code generated by our approach leveraging the auto-tuner. Both codes
are designed to produce a 256×16 tile of a larger image. We observe from Figure 6.8
that our approach achieved a geometric mean performance improvement of 1.10× from the
Halide codes compared with the available expert-written codes.
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Figure 6.8: Comparison of our approach with auto-tuner against the available expert-written codes
for CONV2D operation with 3×3 and 5×5 filters.

The auto-tuner of our approach was able to find better schedules than used in the expert-
written codes (roof-line graphs for the workloads is shown in Figure 6.9), including non-
unit unroll and jam factors along the image height (loop-y) dimension for better reuse.
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These non-unit factors also enabled more opportunities in the loop body for the downstream
compilers to perform better software pipelining. Furthermore, since workload sizes are also
expressed in the Halide codes, our approach annotated the loops of generated codes with
pragmas about the loop sizes to help the downstream compilers, especially helping the
automatic software pipelining to accurately estimate the pre-amble and post-amble set up
overheads and generate better VLIW code. Such overheads can be significant, particularly
for tiled inner loops executed many times.

Figure 6.9: Roof-line graphs of four workloads considered in Figure 6.8, where each data point is a
schedule explored by the auto-tuner.

In case of the 3x3 and 5x5 filters with 16-bit operands, the total number of fusible
logical 1D vector multiplications corresponding to each row of the filters is an odd num-
ber. Hence, our approach padded the filters with an additional column to generate even
number of fusible 1D operations and map onto the two columns present in the 2D SIMD
datapath for 16-bit types. But, expert-written codes fused logical 1D vector multiplications
corresponding to different rows of the filters, thereby avoiding the padding. This was ac-
complished by carefully merging the required input image data from different rows into
a single vector register. Our approach currently doesn’t exploit this optimization strategy
and would require additional analysis to enable it. However, we see that the code generated
using our approach is still able to perform better than the expert-written code by leveraging
loop unroll and jam transformations.

In addition to the 3x3 and 5x5 filters, we have evaluated other filter sizes commonly
used in Computer Vision applications. Table 6.6 presents those workload sizes, total MAC
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Table 6.6: CONV2D workloads of Computer Vision used in our evaluation and optimal schedules
from auto-tuner

Output
(O) size

Weight
(W) size

Input
(I) size #MACs

Optimal schedule
from auto-tuner

Unroll and
Jam factors Loop

order32-bit 16-bit
x y x y

256
x 16

2 x 2 264 x 17 16384 1 4 1 8 xy
3 x 3 264 x 18 36864 1 4 1 2 xy
4 x 4 264 x 19 65536 1 2 1 1 xy
5 x 5 264 x 20 102400 1 2 1 1 xy
6 x 6 264 x 21 147456 1 1 1 1 xy
7 x 7 264 x 22 200704 1 1 1 1 xy
8 x 8 264 x 23 262144 1 4 1 1 xy
9 x 9 264 x 24 331776 1 4 1 1 xy

10 x 10 264 x 25 409600 1 4 1 4 xy
11 x 11 264 x 26 495616 1 4 1 4 xy
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Figure 6.10: Performance of our approach generated codes for CONV2D workloads of Computer
Vision over filter sizes from 2 to 11.

operations involved in each workload, and optimal schedules reported by the auto-tuner.
We padded each non-even sized 16-bit filter with an additional column for evaluation, but
we used the MACs obtained by the filter without padding while computing the performance
(MACs/cycle). As can be observed from Figure 6.10, our approach achieved a geometric
mean performance of 7.67 and 25.92 MACs/cycle for 32-bit and 16-bit types respectively
for the workloads in Table 6.6. The auto-tuner chose the loop-x for vectorization for all
the workloads, because it has more reuse opportunities and has larger number of iterations
compared to the loop-y. The optimal unroll and jam factors are not the same for all the
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workloads and also vary for different precisions of the same filter size. Even though in-
creasing unroll and jam factors improve the reuse opportunities, but it often resulted in
register spills after a threshold and also interfered with software pipelining of inner loops.
Furthermore, larger unroll and jam factors along the loop-x resulted in larger connected
components of the reuse graph and required larger vector register than the maximum pos-
sible (e.g., 1024b for 32-bit operands) in the hardware.

6.5.2 CONV2D in Deep Learning

Table 6.7: CONV2D workloads of deep learning used in our evaluation (variable names described
in Section 6.3) and optimal schedules.

CONV
type

Output
(O) size

(XxYxK)

Filter
(F) size

(RxSxCxK)

Input
(I) size

(X’xY’xC)
#MACs Precision

Optimal schedules from the auto-tuner

Data layouts Vector
loop

SW
loop

Unroll and
Jam factors Loop

orderO W I x y k

(REG)

128x2x16

3x3x8x16 144x4x8 294912
32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k x 1 2 1 kyx
16-bit KYX K(C/2)SR(2) (C/2)Y’X’(2) x x 1 1 1 yxk

5x5x8x16 144x6x8 819200
32-bit KYX KCSR CY’X’ x x 1 1 1 kyx
16-bit KYX K(C/2)SR(2) (C/2)Y’X’(2) x x 1 2 1 kyx

7x7x8x16 144x8x8 1605632
32-bit KYX KCSR CY’X’ x x 1 2 1 kyx
16-bit KYX K(C/2)SR(2) (C/2)Y’X’(2) x x 1 2 1 kyx

(PW) 1x1x8x16 144x2x8 32768
32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k x 1 2 1 kyx
16-bit YXK (K/16)SR(C/2)(16)(2) Y’X’C k k 1 2 1 xyk

(SS)
1x3x8x16 144x4x8 98304

32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k p 1 2 1 kyx
16-bit KYX K(C/2)SR(2) (C/2)Y’X’(2) x x 1 2 1 kyx

3x1x8x16 144x2x8 98304
32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k x 1 1 1 kyx
16-bit YXK (K/16)SR(C/2)(16)(2) Y’X’C k k 1 2 1 xyk

(DS) 3x3x16x16 144x4x16 36864
32-bit KYX KCSR CY’X’ x x 1 2 1 kyx
16-bit KYX KCSR CY’X’ x x 1 2 1 kyx

(FC) 4096x1x1 1x1x8x4096 16x1x8 32768
32-bit XYK (K/8)(C/8)SR(8)(8) (C/8)Y’X’(8) k k 1 1 1 kyx
16-bit YXK (K/16)SR(C/2)(16)(2) Y’X’C k k 1 1 1 xyk

We considered a wide variety of CONV2D operations in the deep learning domain such
as regular (REG) CONV2D over various filter sizes, point-wise (PW), spatially separable
(SS), depth-wise separable (DS), and fully-connected (FC) operations. Table 6.7 presents
those workload sizes (with unit batch size, i.e., N = 1), total MAC operations involved
in each workload, and optimal schedules reported by the auto-tuner. Since the memory
footprint of typical CONV2D operations don’t fit into the local memory, we chose the
similar output and input tensor memory footprint used in Table 6.6. As can be observed
from Figure 6.11, our approach achieved a geometric mean performance of 7.67 and 22.53
MACs/cycle for 32-bit and 16-bit types respectively for the workloads in Table 6.7.

The auto-tuner chose either loop-x or loop-k for vectorizing the workloads, because
the number of iterations of remaining loops are smaller than the vector length. The auto-
tuner identified the vectorization along the loop-x to be beneficial for the REG-5x5, REG-
7x7 workloads, because there exist more opportunities for vector register reuse (convolu-
tional reuse) along the loop-x with the larger kernels sizes. But, for the workloads such as
PW (REG-1x1), FC that have either less or no convolutional reuse along the loop-x, the
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Figure 6.11: Performance of our approach generated codes for CONV2D workloads (shown in
Table 6.7) of Deep Learning.

vectorization was performed on the loop-k.

Figure 6.12: Data-layouts of input and weight tensors of the 16-bit REG-3x3 workload (Table 6.7),
to enable the fusion of 1D logical vector multiplications along the channels, thereby avoiding the
padding required for weights.

In these workloads, there exists an even number of fusible logical 1D vector multipli-
cations corresponding to the filter channels, hence our approach didn’t require any padding
to the filter tensors (unlike in Table 6.6), except for the depth-wise CONV2D workload
which has only one channel. However, the data-layouts of these workload tensors need to
be modified to support the fusion of 1D logical vector multiplications along the channels.
An example data-layout for the input and weights of the 16-bit REG-3x3 workload for the
fusion along channels is shown in Figure 6.12, where the data-layout scheme for the input
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tensor (C/2)Y’X’(2) refers to first laying out a block of two channels followed by width,
height, and remaining channels.

Along with the advantages of avoiding padding, data-layouts can be used for explor-
ing better schedules as well. Such data-layout schemes over the workload tensors should
respect two constraints: 1) The required number of data elements of each operand of the
fused vector multiplication should fit into the maximum vector register size (e.g., 32 unique
16-bit input data elements for the vector multiplication in Figure 6.12 can fit into a 1024b
vector register which is the maximum), and 2) The required data selection parameters over
the vector register should respect the shuffle network constraints. Our auto-tuner was able
to automatically explore a variety of such valid data-layout schemes in our evaluation. Al-
though the resulting data-layouts can be implemented by the architecture, they can be rather
complex and non-intuitive (e.g., (K/16)SR(C/2)(16)(2) in Table 6.7). Manually identifying
such a data layout and writing the corresponding instrisic-based code is extremely challeng-
ing and error-prone, even for experts, thereby demonstrating the benefits of our automatic
approach.

In Table 6.7, we see that the arithmetic intensity of the FC workload for the 16-bit is
to the left-side of the inflection point of the roof-line graph of the AI engine, indicating
memory-bound execution. This is expected, since the FC workload has little opportunity
for data reuse within a single convolution operation. The workload peak performance based
on its arithmetic intensity is 21.22 MACs/cycle, and our approach achieved 15.77 MACs/-
cycle or 75% of the workload peak.

6.5.3 CONV3D

In this evaluation, we focused on the simpler CONV3D workloads to further demonstrate
the applicability of our approach. The output sizes in these workloads are the same as in the
CONV2D workloads in Table 6.7, i.e., 168x2x16, and the weight tensor sizes are 3x3x3,
5x5x5, and 7x7x7 which are popular in the 3D CNN models [172, 173]. Since the number
of fusible 1D logical vector multiplications corresponding to any dimension of the weight
tensor in these workloads are odd, we have padded the weights with an additional column
for each row. With this padding, our approach achieved a geometric mean performance of
7.55 and 21.60 MACs/cycle for 32-bit and 16-bit types, respectively shown in Figure 6.13.

Overall, our evaluation over all the workloads shows geometric means of 7.6 and 23.3
MACs/cycle for 32-bit and 16-bit operands (which represent 95.9% and 72.8% of the peak
performance respectively). This difference in efficiency is not surprising, since it is more
challenging to utilize two columns in the SIMD data path in the case of 16-bit operands,
compared to a single column in the case of 32-bit operands. However, the absolute perfor-
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Figure 6.13: Performance of our approach generated codes for CONV3D workloads with weight
sizes as 3x3x3, 5x5x5, 7x7x7.

mance in the 16-bit case is still significantly higher than the 32-bit case, despite a lower
efficiency.

6.6 Related Work

High-level and domain-specific compiler frameworks [70, 174, 158, 175, 176, 177, 178,
179] have been shown to improve the productivity of application programmers, while gen-
erating high-performance code for a variety of architectures including CPUs, GPUs, FP-
GAs, Spatial accelerators, and distributed systems. Notably, the Halide framework [70]
for image processing pipelines has gained popular attention in the academic and indus-
trial world. Recently, Vocke et al. [180] extended the Halide framework to support spe-
cialized Digital Signal Processors (DSPs), mainly focusing on SIMD instruction sets and
heterogeneous scratchpad memories of the Intel Imaging Processing Units (IPUs). Further-
more, Halide has the support for the Hexagon Vector eXtensions (HVX) on the Qualcomm
Hexagon DSP processors. However, none of the above prior work focused on targeting the
2D SIMD datapaths and the shuffle interconnection networks, which are unique to the AI
Engine.

To the best of our knowledge, the only prior work on auto-vectorizing for a 2D SIMD
datapath is the work by Dasika et al. [32], where the authors have proposed a greedy
compiler approach implemented as an extension to Trimaran [181] compiler, to identify
a sequence of back to back vector operations for execution on their PEPSC’s architecture
chained FPUs. But our approach identifies a group of such back to back dependent (i.e.,
fusible 1D logical) vector operations by searching in the triplet representation, a simplified
and symbolic view of the convolution loop body.

Exploiting vector register reuse (including partial reuse) on SIMD units is a vital op-
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timization to achieve high-performance, and prior work exploited the reuse by shuffling
the vector registers using the data manipulation/shuffle units [168, 182, 183]. But our ap-
proach constructs a larger vector load covering the loads having reuse and uses the AI
Engine’s unique shuffle network to select the desired elements. Furthermore, our approach
uses the shuffle network to address the unaligned vector loads and scalar broadcasts without
requiring any additional hardware support.

The vector codes generated by our approach are viewed as high-performance primitives
that are intended to execute on a single AI Engine. These primitives are composed and
integrated by a high-level compiler to run larger tensor convolutions across multiple AI
Engines. Some of the prior works that have followed the similar strategy of automating
the library/primitive development for the performance-critical kernels are SPIRAL [184]
for the domain of linear transforms, ATLAS [185] for the basic linear algebra subroutines
(BLAS), and FFTW [186] for the discrete Fourier transforms.

6.7 Summary

In this work, we introduced Vyasa, a high-level programming system built on the Halide
framework, to generate high-performance vector codes for the tensor convolutions onto
the Xilinx Versal AI Engine. Our proposed multi-step compiler approach leverages the
AI Engine’s unique capabilities of the 2D SIMD datapath and the shuffle interconnec-
tion networks to achieve close to the peak performance for various workloads. Manually
identifying best schedules and writing the corresponding intrinsic-based code is extremely
challenging and error-prone, even for experts, thereby demonstrating the benefits of our
automatic approach. Our results show geometric means of 7.6 and 23.3 MACs/cycle for
32-bit and 16-bit operands (which represent 95.9% and 72.8% of the peak performance
respectively). For four of these workloads for which expert-written implementations were
available to us, Vyasa achieved a geometric mean performance improvement of 1.10× from
Halide code that is around 50× smaller than the expert-written C/C++ code.

Chapter 5 and Chapter 6 focused on our advances in compiler optimizations for ac-
celerating machine learning applications on the spatial accelerators. In the next chapter,
we focus on accelerating graph algorithms on a domain-specific processor, i.e., EMU, a
thread-migratory and near-memory architecture introduced to optimize weak-locality opti-
mizations.
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CHAPTER 7
COMPILER OPTIMIZATIONS FOR GRAPH ANALYTICS ON A THREAD

MIGRATORY ARCHITECTURE (EMU)

7.1 Abstract

Unlike dense linear algebra applications, graph applications typically suffer from poor per-
formance because of 1) inefficient utilization of memory systems through random memory
accesses to graph data, and 2) overhead of executing atomic operations. Hence, there is
a rapid growth in improving both software and hardware platforms to address the above
challenges. One such improvement in the hardware platform is a realization of the Emu
system, a thread migratory and near-memory processor. In the Emu system, a thread re-
sponsible for computation on a datum is automatically migrated over to a node where the
data resides without any intervention from the programmer. The idea of thread migrations
is very well suited to graph applications as memory accesses of the applications are irregu-
lar. However, thread migrations can hurt the performance of graph applications if overhead
from the migrations dominates benefits achieved through the migrations.

In this preliminary study [37], we explore two high-level compiler optimizations, i.e.,
loop fusion and edge flipping, and one low-level compiler transformation leveraging hard-
ware support for remote atomic updates to address overheads arising from thread migration,
creation, synchronization, and atomic operations. We performed a preliminary evaluation
of these compiler transformations by manually applying them on three graph applications
over a set of RMAT graphs from Graph500 –Conductance, Bellman-Ford’s algorithm for
the single-source shortest path problem, and Triangle Counting. Our evaluation targeted
a single node of the Emu hardware prototype, and has shown an overall geometric mean
reduction of 22.08% in thread migrations.

7.2 Introduction

Though graph applications are increasing in importance with the advent of “big data”,
achieving high performance with graph algorithms is non-trivial and requires careful atten-
tion from programmers [1]. Two significant bottlenecks to achieving higher performance
on existing CPU and GPU-based architectures are 1) inefficient utilization of memory sys-
tems through random memory accesses to graph data, and 2) overhead of executing atomic
operations. Since graph applications are typically cache-unfriendly and are not well sup-
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ported by existing traditional architectures, there is growing attention being paid by the
architecture community to innovate suitable architectures for such applications. One such
innovation is the Emu system, a highly scalable near memory system with support for mi-
grating threads without programmer intervention [15]. The system is designed to improve
the performance of data-intensive applications exhibiting weak locality, i.e., from irregular
and cache-unfriendly memory access which are often found in graph analytics [51] and
sparse matrix algebra operations [52].

Emu architecture. An Emu system consists of multiple Emu nodes interconnected by
a fast-rapid IO network, and each node (shown in Figure 7.1) contains nodelets, stationary
cores and migration engines. Each nodelet consists of a Narrow Channel DRAM (NC-
DRAM) memory unit and multiple Gossamer cores, and the co-location of the memory
unit with the cores makes the overall Emu system a near-memory system. Even though
each nodelet has a different physical co-located memory unit, the Emu system provides a
logical view of the entire memory via the partitioned global address space (PGAS) model
with memory contributed by each nodelet.

Each gossamer core of a nodelet is a general-purpose, simple pipelined processor with
no support for data caches and branch prediction units, and is also capable of supporting
64 concurrent threads using fine-grain multi-threading. A key aspect of the Emu system is
thread migration by hardware, i.e., a thread is migrated on a remote memory read by remov-
ing thread context from the nodelet and transmitting the thread context to a remote nodelet
without programmer intervention. As a result, each nodelet requires multiple queues such
as service, migration and run queues to process threads spawned locally (using spawn in-
struction) and also migrated threads.

Software support. The Emu system supports the Cilk parallel programming model
for thread spawning and synchronization using cilk spawn, cilk sync and cilk for
constructs [54]. Since the Emu hardware automatically takes care of thread migration and
management; hence the Cilk run-time is discarded in the toolchain. Also, it is important to
note that appending a cilk spawn keyword before a function invocation to launch a new
task is directly translated to the spawn instruction of the Emu ISA during the compilation.
The Emu system also provides libraries for data allocation and distribution over multiple
nodelets, and intrinsic functions for atomic operations and migrating thread control func-
tions. Also, there has been significant progress made in supporting standard C libraries on
the Emu system.

Even though the Emu system is designed to improve the performance of data-sensitive
workloads exhibiting weak-locality, the thread migrations across nodelets can hamper the

119



Figure 7.1: Overview of a single Emu node (figure source: [53]), where a dotted circle represents a
nodelet. Note that, the co-location of the narrow channel memory unit (NCDRAM) with gossamer
cores makes the overall Emu system a near memory system.

performance if overhead from the thread migration dominates the benefits achieved through
the migration. In the next section, we study both high-level and low-level compiler trans-
formations which can be applied to original graph applications to mitigate the overheads as
mentioned earlier.

7.3 Compiler Transformations

In this section, we discuss two high-level compiler transformations (Node fusion and Edge

flipping)1, and one low-level compiler transformation leveraging the remote atomic update

feature of the hardware, to mitigate the impact of overheads in the performance of graph
applications on the Emu system.

7.3.1 Node/Loop Fusion

Programmers write graph applications with multiple parallel loops over nodes of a graph
either to 1) compute various properties of a node (e.g., in Conductance [187, 188]), or
2) query on computed properties of nodes (e.g., in Average teenage followers [189]). In
such scenarios, multiple such parallel loops can be grouped into a single parallel loop,
and compute multiple properties in the same loop or query immediately after computing

1Note that these high-level transformations – node fusion and edge flipping – have already been explored
in past work on optimizing graph algorithms on the x86 architectures [79], and we are evaluating them in the
context of the EMU system in this work.
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the properties. This grouping can result in reducing thread migrations occurring in later
loops, and also overheads arising from thread creation and synchronization. The grouping
of multiple such parallel loops is akin to loop fusion, a classical compiler transformation
for improving locality; but we use the transformation to reduce unnecessary migrations (for
more details, see Section 7.4.2).

7.3.2 Edge Flipping

Edge flipping is another compiler transformation discussed in [79] to flip a loop over in-
coming edges of a node with outgoing edges of the node. However, we generalize the edge
flipping transformation to allow flips between both incoming and outgoing edges. To allow
this bi-directional flipping, the transformation assumes an input graph to be bi-directional,
i.e., each node in the graph stores a list of incoming edges along with outgoing edges.

Vertex centric graph algorithms such as Page rank, Bellman-Ford algorithm for single-
source shortest path, Page coloring offer opportunities to explore the edge flipping trans-
formation since these algorithms either explore incoming edges of a node to avoid syn-
chronization (pull-based approach), or explore outgoing edges to reduce random memory
accesses (push-based approach), or explore a combination [190, 80]. We discuss the above
push-pull dichotomy in Section 7.3.2, using the Bellman-Ford’s algorithm as a represen-
tative of vertex-centric graph algorithms.

7.3.3 Use of Remote Updates

Remote updates, one of the architectural features of the Emu, are stores and atomic oper-
ations to a remote memory location that don’t require returning a value to the thread, and
these operations do not result in thread migrations [15]; instead they send an information
packet to the remote nodelet containing the data and the operation to be performed. These
remote updates also can be viewed as very efficient special-purpose migrating threads, and
they don’t return a result unlike regular atomic operations, but they return an acknowledge-
ment that the memory unit of the remote nodelet has accepted the operation. We leverage
this feature as a low-level compiler transformation replacing regular atomic operations that
don’t require returning a value by the corresponding remote updates. The benefits of this
transformation can be immediately seen in vertex-centric algorithms (Section 7.4.3) and
also in the triangular counting algorithm (Section 7.4.4).
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7.4 Experiments

In this section, we present the benefits of applying the compiler transformations on graph
algorithms. We begin with an overview of the experimental setup and the graph algorithms
used in the evaluation, and then we present our discussion on preliminary results for each
algorithm.

7.4.1 Experimental Setup

Our evaluation uses dedicated access to a single node of the Emu system, i.e., the Emu
Chick prototype2 which uses an Arria 10 FPGA to implement Gossamer cores, migration
engines, and stationary cores of each nodelet. Table 7.1 lists the hardware specifications
of a single node of the Emu Chick.

Table 7.1: Specifications of a single node of the Emu system.
Emu system

Microarch Emu1 Chick
Clock speed 150 MHz
#Nodelets 8

#Cores/Nodelet 1
#Threads/Core 64

Memorysize/Nodelet 8 GB
NCDRAM speed 1600MHz

Compiler toolchain emusim.HW.x (18.08.1)

In the following experiments, we compare two experimental variants: 1) Original ver-
sion of a graph algorithm running with all cores of a single node and 2) Transformed
version after manually applying compiler transformations on the graph algorithm. In all
experiments, we measure only the execution time of the kernel and report the geometric
mean execution time measured over 50 runs repeated in the same environment for each
data point. The speedup is defined as the execution time of the original version of a graph
algorithm divided by the execution time of the transformed version of the program running
with all cores of a single node of the Emu system in both cases,i.e., eight cores.

We also use an in-house simulation environment of the Emu prototype, whose speci-
fications match with the hardware details mentioned in Table 7.1, to measure statistics of
programs such as thread migrations, threads created and terminated. We are not currently
aware of any methods for extracting these statistics from the hardware. We define the

2Several aspects of the system are scaled down in the prototype Emu system, e.g., number of gossamer
cores of a nodelet
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percentage reduction in thread migrations3 as follows:

%reduction in migrations

= (1 −
(#migrations in the transformed version

#migrations in the original version
)
)
× 100

Finally, we evaluate the benefits of compiler transformations by measuring both improve-
ments in execution time on the Emu hardware and reduction in thread migrations on the
Emu simulator.

Graph applications: For our evaluation, we consider three graph algorithms, i.e.,
1) Conductance algorithm, 2) Bellman-Ford’s algorithm for Single-source shortest path
(SSSP) problem, and 3) Triangle counting algorithm. Both original and transformed ver-
sions of above algorithms are implemented using the Meatbee framework [191], an in-
house experimental streaming graph engine used to develop graph algorithms for the Emu
system. The Meatbee framework, inspired by the STINGER framework [192], uses a
striped array of pointers to distribute the vertex array across all nodelets in the system,
and also implements the adjacency list as a hash table with a small number of buckets.

Table 7.2: Experimental evaluation of three graph algorithms (Conductance, SSSP-BF and Triangle
counting) on the RMAT graphs from scales 6 to 14 specified by Graph500. Transformations applied
on the algorithms: Conductance/SSSP-BF/Triangle counting: (Node fusion)/(Edge flipping and
Remote updates)/ (Remote updates). The evaluation is done a single node of the Emu system
described in Table 7.1. Note that we had intermittent termination issues while running SSSP-BF
from scale 13-14 on the Emu node, and hence we omitted its results.

Scale #vertices #edges
Thread migrations in
the original program

Execution time of the original program (ms),
geometric mean of 50 runs

Conductance SSSP-BF Triangle counting Conductance SSSP-BF Triangle counting
6 64 1K 6938 10915 26407 4.45 26.32 53.63
7 128 2K 13812 22851 84168 7.51 393.04 163.36
8 256 4K 28221 48354 252440 13.89 1634.64 547.84
9 512 8K 59068 104653 809423 32.13 2887.61 1694.09

10 1K 16K 122088 220204 2475350 64.59 4589.42 3942.55
11 2K 32K 253364 474118 7381977 134.43 10225.10 12649.30
12 4K 64K 522530 1136600 21777902 844.38 32140.30 36199.60
13 8K 128K 1065640 2332741 64063958 1841.53 - 185864.00
14 16K 256K 2171311 4569519 180988114 7876.99 - 721578.00

Input data-sets: We use RMAT graphs (edges of these graphs are generated randomly
with a power-law distribution), scale4 from 6 to 14 as specified by Graph500 [2]. Note

3Note that the thread migration counts are for the entire program, and we are not currently aware of any
existing approaches on how to obtain migration counts for a specific region of code.

4A scale of n for an input graph refers to having 2n vertices.
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that all the above graphs specified by Graph500 are generated using the utilities present
in the STINGER framework. Table 7.2 presents details of the RMAT graphs used in our
evaluation, and total thread migrations and execution times of the original graph algorithms
on the Emu system.

7.4.2 Conductance algorithm

The conductance algorithm is a graph metric application to evaluate a graph partition by
counting the number of edges between nodes in a given partition and nodes in other graph
partitions [187, 188]. The algorithm is frequently used to detect community structures in
social graphs. An implementation of the conductance algorithm is shown in Algorithm 4.
The implementation5 at a high-level consists of three parallel loops iterating over vertices
of a graph to compute different properties (such as din, dout, dcross) of a given par-
tition (specified as id in the algorithm). Finally, these properties are used to compute
conductance value of the partition of the graph.

Algorithm 4: An implementation of the Conductance algorithm [187, 188].
1 def conductance(V, id):;
2 for each v ∈ V do in parallel with reduction
3 if v.partition id == id then

; // Thread migration for v.partition id value
4 din+ = v.degree ;

5 for each v ∈ V do in parallel with reduction
6 if v.partition id != id then
7 dout+ = v.degree

8 for each v ∈ V do in parallel with reduction
9 if v.partition id == id then

10 for each nbr ∈ v.nbrs do
11 if nbr.partition id != id then
12 dcross+ = 1

13 return dcross/((din < dout)?din : dout)

As can be seen from the implementation, the EMU hardware spawns a thread for
every vertex (v) of the graph from the first parallel loop (lines 2-4), and migrates to a
nodelet where the vertex property partition id is stored after encountering the property
(v.partition id) at line 3. Since the degree property of the vertex (v) is also stored

5The implementation is from a naive translation from existing graph analytics domain-specific compilers
for non-EMU platforms.

124



on the same nodelet as of the other property6, the thread doesn’t migrate on encountering
the property, v.degree, at line 4. After reduction of the din variable, the hardware per-
forms a global synchronization of all spawned threads because of an implicit barrier after
the parallel loop. After the synchronization, the hardware again spawns a thread for every
vertex from the second parallel loop (lines 5-7), and migrates after encountering the same
property (v.partition id at line 6). The same behavior is repeated in the third paral-
lel loop as well (lines 8-12). The repeated migrations to the same nodelet from multiple
parallel loops, which arise from accessing the same property or a different property which
is stored on the same nodelet, can be reduced by fusing all the three parallel loops into a
single loop. Also, the fusion of multiple parallel loops can reduce the overhead of multiple
thread creations and synchronization. As can be seen from Figure 7.2, we have observed
a geometric mean reduction of 6.06% in the total number of thread migrations after fusing
three loops. As a result, we also found a geometric mean speedup of 1.95x in the execution
time of the computation over the scale 6-14 of RMAT graphs specified by Graph500. This
performance improvement demonstrates the need for fusing parallel loops over nodes of
a graph to compute values/properties together to reduce thread migrations in applications
such as Conductance.
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Figure 7.2: Speedup over the original conductance algorithm on a single Emu node (8 nodelets) and
% reductions in thread migrations after applying loop fusion.

7.4.3 Single Source Shortest Path using Bellman-Ford’s Algorithm (SSSP-BF)

Bellman-Ford’s algorithm is used to compute shortest paths from a single source vertex to
all the other vertices in a weighted directed graph. An implementation of the algorithm is

6The properties of vertices (such as partition id, degree) are allocated similar to the vertex allocation,
i.e., uniformly across all nodelets.
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shown in Algorithm 5. We added a minor step (at lines 15, 18, 23-25) in the body of the
t-loop to the implementation for termination if subsequent iterations of the t-loop will
not make any more changes, i.e., the distance computed (temp distance) for each vertex
in the current iteration is the same as the distance in the previous iteration (distance).

Algorithm 5: An implementation of the Bellman-Ford’s algorithm (SSSP-BF).
1 def SSSP BFS(V, id):;
2 distance(id)← 0;
3 distance(v)← MAX, for ∀v ∈ (V − {id});
4 temp distance(v)← 0, for ∀v ∈ V;
5 for t ← 0 to |V | − 1 do
6 for each v ∈ V do in parallel
7 for each u ∈ incoming neighbors(v) do
8 temp = distance(u) + weight(u, v);

; // Migration for distance(u) value

9 if distance(v) > temp then
10 temp distance(v) = temp ;
11 end
12 end
13 endfor
14 ;
15 modi f ied ← f alse ;
16 for each v ∈ V do in parallel
17 if distance(v)! = temp distance(v) then
18 modi f ied ← true ;
19 distance(v) = temp distance(v)
20 end
21 endfor
22 ;
23 if modified == false then
24 break;
25 end
26 end
27 return distance;

As can be seen from the implementation, the EMU hardware spawns a thread for every
vertex (v) of the graph from the parallel loop (lines 6-13) nested inside the t-loop. The
thread responsible for a particular vertex (v) in a given iteration (t) migrates to an incom-
ing neighbor vertex (u) on encountering the accesses distance(u) and weight(u, v)
(line 8). After adding the values, the thread migrates back to the original node for writing
after encountering the access temp distance(u) (line 9). The same migration behavior
is repeated for every incoming neighbor vertex, and finally the local value based on the
best distance from incoming neighbors is computed. This approach is commonly known
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as a pull-based approach since the vertex pulls information from incoming neighbors to
update its local value. However, the back and forth migrations for every neighbor vertex
via incoming edges can be avoided by doing the edge flipping transformation (discussed
in Section 7.3.2), i.e., the loop iterating over incoming edges is flipped into a loop over
outgoing edges. The transformations leads to a push-based approach for the SSSP algo-
rithm, in which a vertex pushes its contribution (distance(u) + weight(u, v)) to its
neighbors accessible via outgoing edges and doesn’t require migrating to the neighbors,
as in the pull-based approach. Since multiple vertices can have a common neighbor, the
contribution is done atomically, i.e., by using atomic min in our implementation.
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Figure 7.3: % reductions in thread migrations of SSSP-BF algorithm after applying edge flipping
with regular atomic updates and with remote atomic updates on a single node (8 nodelets) of Emu
Chick.

Figure 7.4: Speedup of SSSP-BF algorithm on a single Emu node (8 nodelets) after applying edge
flipping with regular atomic updates and with remote updates.

As a result of applying edge-flipping transformation, we have observed a geometric
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mean reduction of 8.69% in the total number of thread migrations (shown in Figure 7.3).
However, the push-based approach with regular atomic updates didn’t perform well com-
pared with the pull-based approach from the scale of 7 to 9 (shown in Figure 7.4), because
of irregularity in the input graphs and imbalance in the number of incoming and outgo-
ing edges. As a result, the cost of migrating back and forth in the pull-based approach
was not expensive compared to doing more atomic updates in the push-based approach
for the above data points. This observation is in accordance with the push-pull dichotomy
discussed in [190, 80].

Furthermore, the push-based approach can be strengthened by replacing regular atomic
updates with remote atomic updates since a node which is pushing its contribution (i.e., its
distance) to neighbors via outgoing edges doesn’t need a return value. By doing so, we
have observed a geometric mean reduction of 30.28% in thread migrations (shown in Fig-
ure 7.3) compared to the push-based approach with regular atomic updates. Also, there
is an overall geometric mean improvement of 1.57x in execution time relative to the push-
based approach with regular atomic updates (shown in Figure 7.4). The above performance
improvement demonstrates the need for using remote atomic updates for scalable perfor-
mance, and also exploring hybrid approaches involving both push and pull strategies based
on input graph data.

7.4.4 Triangle Counting Algorithm

Triangle counting is another graph metric algorithm which computes the number of trian-
gles in a given undirected graph, and also computes the number of triangles that each node
belongs to [193]. The algorithm is frequently used in complex network analysis, random
graph models, and also real-world applications such as spam detection. An implementa-
tion of the Triangle counting is shown in Algorithm 6, and it works by iterating over each
vertex(v), picking two distinct neighbors (u, w), and check if there exists an edge between
them to be part of a triangle. Also, the implementation avoids duplicate counting by dele-
gating the counting of a triangle to the vertex with lower id.

In the above implementation of the triangle counting algorithm, whenever a triangle is
identified (line 7), the implementation atomically increments the overall triangles count and
triangle counts of the three vertices of the triangle. As part of the atomic update operation,
the thread performs a migration to the nodelet having the address. However, the thread
incrementing the triangle counts doesn’t need the return value of the increment for further
computation; hence, the regular atomic updates can be replaced by remote atomic updates
to reduce thread migrations. After replacing with remote updates, we have observed a ge-
ometric mean reduction of 54.55% in the total number of thread migrations (shown in Fig-
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Algorithm 6: An implementation of the Triangle counting algorithm [193].
1 tc(v)← 0, for ∀v ∈ (V);
2 for each v ∈ V do in parallel
3 for each u ∈ v.nbrs do
4 if nbr1 > v then
5 for each w ∈ v.nbrs do
6 if w > u then
7 if edge exists(u,w) then
8 tc count ++; //Atomic ;
9 tc(v) ++; //Atomic ;

10 tc(u) ++; //Atomic ;
11 tc(w) ++; //Atomic ;

; // Above regular atomics can be replaced by the

remote updates.

0.0

1.0

2.0

3.0

4.0

Scale of RMAT graphs specif ed by Graph500

6 7 8 9 10 11 12 13 14

59.4359.0858.5557.7956.8955.3052.8749.5143.76

1.011.011.011.031.011.03

1.26

1.10
1.01

Speedup after using remote atomic updates
%reduction in thread migrations after using remote atomic updates

Figure 7.5: Speedup over the original triangle counting implementation on a single Emu node (8
nodelets) and % reductions in thread migrations after using remote atomic updates.

ure 7.5). As a result, we also found a geometric mean speedup of 1.05x7 in the execution
time of the kernel over the scale 6-14 of RMAT graphs specified by Graph500.

7.5 Related Work

There is an extensive body of literature in optimizing graph applications for a variety of
traditional architectures [194, 195, 196], accelerators [197, 198], and processing in mem-

7Note that the computational complexity of the triangle counting algorithm is significant, i.e., O(m
3
2 )

where m is number of edges, and 5% improvement is equivalent to few thousands of msecs as reported
in Table 7.2.
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ory (PIM) architectures [199, 200]. Also, there has been significant research done on op-
timizing task-parallel programs to reduce the overheads arising from task creation, syn-
chronization [201, 202, 203] and migrations [204]. In this section, we discuss past work
closely related to optimizing irregular applications for the Emu system and also past work
on compiler optimizations in mitigating task (thread) creation, synchronization and migra-
tion overhead.

Emu related past work. Kogge et al. in [52] discussed migrating thread paradigm of
the Emu system as an excellent match for systems with significant near-memory process-
ing, and evaluated its advantage over a sparse matrix application (SpMV) and a streaming
graph analytic benchmark (Firehose). Hein et al. [205] characterized the Emu chick
hardware prototype (same as what we used in our evaluation) using custom kernels and
discussed memory allocation, thread migrations strategies for SpMV kernels. In this work,
we study high-level, and low-level compiler transformations that can benefit existing graph
algorithms by leveraging the intricacies discussed in [15, 52, 205, 206, 207].

Programming models support and compiler optimizations for reducing thread cre-
ation, synchronization and migration overheads. Task-parallel programs often result in
considerable overheads in task creation and synchronization, and hence approaches in [201,
202, 203] presented compiler frameworks to transform the input program to reduce the
overheads using optimizations such as task fusion, task chunking, synchronization (finish
construct) elimination. Our study on the loop fusion transformation to reduce thread cre-
ation and synchronization overheads on the Emu system is inspired by the above compiler
frameworks and also from the Green-Marl DSL compiler [79].

7.6 Summary

Graph applications are increasing in popularity with the advent of “big data”, but achieving
higher performance is not trivial. The major bottlenecks in graph applications are 1) in-
efficient utilization of memory subsystems through random memory accesses to the graph
data, and 2) overhead of executing atomic operations. Since these graph applications are
cache-unfriendly and are not well handled by existing traditional architectures, there is
growing attention in the architecture community to innovate suitable architectures for such
applications.

One of the innovative architectures to handle graph applications is a thread migratory
architecture (Emu system), where a thread responsible for computation on a data is mi-
grated over to a nodelet where the data resides. However, there are significant challenges
which need to be addressed to gain the potential of Emu system, and they are reducing
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thread migration, creation, synchronization, and atomic operation overheads. In this study,
we explored two high-level compiler optimizations, i.e., loop fusion and edge flipping, and
one low-level compiler transformation leveraging remote atomic updates to address the
above challenges. We performed a preliminary evaluation of these compiler transforma-
tions by manually applying them on three graph applications over a set of RMAT graphs
from Graph500 –Conductance, Bellman-Ford’s algorithm for the single-source shortest
path problem, and Triangle Counting. Our evaluation targeted a single node of the Emu
hardware prototype, and has shown an overall geometric mean reduction of 22.08% in
thread migrations. This preliminary study clear motivates us in exploring the implementa-
tion of automatic compiler transformations to alleviate the overheads arising from running
graph applications on the Emu system.
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CHAPTER 8
CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation on advancing compiler optimization is motivated by two observations –
1) computer hardware going through a significant disruption as we approach the end of
Moore’s Law, and 2) demand for performance is broadening across multiple application
domains. There exist numerous benefits of using the optimizing compilers relative to Ninja
programmers or library-based approaches. However, the compilers still require advance-
ments in program analysis, transformations, and code generation to enable a wide range
of application domains to better exploit the advancements in both the general-purpose and
domain-specific parallel architectures as part of the hardware disruption. Now, we briefly
summarize our advancements and future directions in each of our compiler advancements.

1) Advancing dependence analysis using explicit parallelism for enhanced paralleliza-
tion on general-purpose multi-core processors: This work is motivated by the observa-
tion that software with explicit parallelism is on the rise. This explicit parallelism could
be used to enable a broader set of polyhedral transformations by mitigating conservative
dependences, compared to what might have been possible if the input program had been
sequential. We introduced an approach that reduces spurious dependences from the con-
servative dependence analysis by intersecting them with the happens-before relations from
parallel constructs. The final set of the dependences can then be passed on to a polyhedral
transformation tool, such as PLuTo or PolyAST, to enable transformations of explicitly
parallel programs. We evaluated our approach using OpenMP benchmark programs from
the KASTORS and the Rodinia benchmark suites. The approach reduced spurious depen-
dences from the conservative analysis of these benchmarks, and the resulting dependence
information broadened the range of legal transformations in the polyhedral optimization
phase. Overall, our experimental results show geometric mean performance improvements
of 1.62x and 2.75x on the 12-core Intel Westmere and 24-core IBM Power8 platforms
respectively, relative to the original OpenMP versions.

Future directions: A promising direction for future work is to extend the approach
to programs with recursive task parallelism, as well as programs that do not satisfy se-
rial elision property such as SPMDized code with explicit OpenMP threads and barriers.
Analyzing more constructs in the input program such as C/C++ structs/classes and STL
data structures in the input programs and generating task-parallel constructs in the code
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generation phase are also subjects for future work.
Applicability to other architectures: Our approach of analyzing explicitly-parallel pro-

grams and enhancing dependence analysis can also be used for optimizing parallel pro-
grams (e.g., OpenMP/CUDA) on GPU architectures by plugging in optimizer and code-
generator for GPUs, for, e.g., PPCG [114] or PolyAST [208].

2) Unification of multiple storage transformations with loop optimizations for en-
hanced vectorization on general-purpose vector processors (SIMD/GPUs): Despite
the fact that compiler technologies for automatic vectorization have been under develop-
ment for over four decades, there are still considerable gaps in modern compilers’ capabil-
ities to perform automatic vectorization for SIMD units. This work focuses on advancing
the state of the art with respect to handling memory-based anti (write-after-read) or out-

put (write-after-write) dependences in vectorizing compilers. In this work, we integrate
both Source Variable Renaming (SoVR) and Sink Variable Renaming (SiVR) transforma-
tions into a unified formulation, and formalize the “cycle-breaking” problem as a minimum
weighted set cover optimization problem. Our approach also can ensure that the additional
storage introduced by our transformations remains within the user-provided bounds. We
implemented our approach in PPCG, a state-of-the-art optimization framework for loop
transformations, and evaluated it on eleven kernels from the TSVC benchmark suite. Our
experimental results show a geometric mean performance improvement of 4.61× on an In-
tel Xeon Phi (KNL) machine relative to the optimized performance obtained by Intel’s ICC
v17.0 product compiler. Further, our results demonstrate a geometric mean performance
improvement of 1.08× and 1.14× on the Intel Xeon Phi (KNL) and Nvidia Tesla V100
(Volta) platforms relative to past work that only performs the SiVR transformation [29],
and of 1.57× and 1.22× on both platforms relative to past work on using both SiVR and
SoVR transformations [30]. We believe that our techniques will be increasingly important
in the current era of pervasive SIMD parallelism since the non-vectorized code will incur
an increasing penalty in runtime on future hardware platforms.

Future directions: A promising direction for future work is to further enhance the
unified formulation by including variable expansion [113] and forward propagation tech-
niques [55] to break pure-output and to handle pure-flow dependence cycles respectively.
Also, we plan to extend our approach and implementation to handle non-affine regions of
codes and support the vectorization of outer loops. Furthermore, we plan to investigate
enabling loop transformations (such as tiling in case of cycles on tiles) using variable re-
naming transformations.

Applicability to other architectures: Our approach of unification of multiple storage
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transformations can also be used to break dependence cycles in case of loop tiling and also
to break selective storage dependences to enable more freedom for the loop transformations
on both multi-core CPUs and GPU architectures. Breaking all storage dependences can be
viewed as converting into Array SSA representation.

3) Data-centric compiler for deep learning operators onto domain-specific DNN spa-
tial accelerators In this work, we provided a precise understanding of DNN operators
whose mappings can be described in the MDC notation by introducing a set of rules over
the operators’ abstract loop nest form. Furthermore, we introduced a transformation for
translating mappings into the MDC notation for exploring the mapping space. Then, we
also proposed a decoupled off-chip/on-chip approach that decomposes the mapping space
into off-chip and on-chip subspaces, and first optimizes the off-chip subspace followed by
the on-chip subspace. We implemented our decoupled approach in a tool called Marvel,
and a significant benefit of our approach is that it applies to any DNN operator conformable
with the MDC notation. Our approach reduced the search space of CONV2D operators
from four major DNN models from 9.4× 1018 to 1.5× 108 + 5.9× 108 u 2.1× 108, which is
a reduction factor of ten billion (Table 5.4), while generating mappings that demonstrate a
geometric mean performance improvement of 10.25× higher throughput and 2.01× lower
energy consumption compared with three state-of-the-art mapping styles from past work.

Future directions: In the future, we envision 1) Marvel integration with the MLIR com-
piler infrastructure for wide usability, 2) extending the MDC notation and its cost model
to support non-conformable operators, and also 3) using for a wide range of applications,
including the neuro-architecture search.

Furthermore, a promising direction for future research, is considering multiple acceler-
ators (potentially heterogeneous) on a chip to schedule DNN models. Also, another direc-
tion is to advance compiler research in finding optimal mappings for sparse accelerators,
given the prevalence of sparse DNN models arising from model pruning.

Applicability to other architectures: Our decoupled approach to reduce the overall
space of mappings can also be used for exploring efficient mappings for other architec-
ture such as multi-core CPUs and GPUs having multiple levels of the memory hierarchy.

4) High-performance vectorizing compiler for tensor convolutions on the Xilinx AI
Engine (domain-specific 2D SIMD processor): In this work, we introduced Vyasa, a
high-level programming system built on the Halide framework, to generate high-performance
vector codes for the tensor convolutions onto the Xilinx Versal AI Engine. Our proposed
multi-step compiler approach leverages the AI Engine’s unique capabilities of the 2D SIMD
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datapath and the shuffle interconnection networks to achieve close to the peak performance
for various workloads. Manually identifying best schedules and writing the corresponding
intrinsic-based code is extremely challenging and error-prone, even for experts, thereby
demonstrating the benefits of our automatic approach. Our results show a geometric mean
of 7.6 and 23.3 MACs/cycle for 32-bit and 16-bit operands (which represent 95.9% and
72.8% of the peak performance respectively). For four of these workloads for which
expert-written implementations were available to us, Vyasa achieved a geometric mean
performance improvement of 1.10× from Halide code that is around 50× smaller than the
expert-written C/C++ code.

Future directions: An exciting future direction is to extend our system to other compu-
tationally expensive linear algebra kernels. We also plan to integrate the generated high-
performance codes into a high-level compiler to run larger convolutions across multiple AI
Engines.

Applicability to other architectures: Our approach of fusing multiple 1D logical vector
operations for 2D SIMD unit, exploring various loop transformations and data-layouts can
also be applied with extensions to other domain-specific architectures such as 2D systolic
arrays (e.g., TPUs [128]) and NVDLA accelerator [46] for generating optimized kernels
for tensor convolutions.

5) Thread-migration aware compiler optimizations for graph analytics on a thread-
migratory domain-specific hardware (EMU): Graph applications are increasing in pop-
ularity with the advent of “big data”, but achieving higher performance is not trivial. Un-
like dense linear algebra applications, graph applications typically suffer from poor per-
formance because of 1) inefficient utilization of memory systems through random memory
accesses to graph data, and 2) overhead of executing atomic operations. Hence, there is
a rapid growth in improving software and hardware platforms to address the above chal-
lenges. One such improvement in the hardware is the Emu system’s realization, a thread
migratory and near-memory processor introduced to address application domains having
weak-locality. In the Emu system, a thread responsible for computation on a datum is au-
tomatically migrated over to a node where the data resides without any intervention from
the programmer. The idea of thread migrations is very well suited to graph applications
as memory accesses of the applications are irregular. However, thread migrations can hurt
graph applications’ performance if overhead from the migrations dominates the benefits
achieved through migrations. In this work, we explored two high-level compiler optimiza-
tions, i.e., loop fusion and edge flipping, and one low-level compiler transformation lever-
aging remote atomic updates to address the above challenges. We performed a preliminary
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evaluation of these compiler transformations by manually applying them on three graph
applications over a set of RMAT graphs from Graph500 –Conductance, Bellman-Ford’s al-
gorithm for the single-source shortest path problem, and Triangle Counting. Our evaluation
targeted a single node of the Emu hardware prototype and has shown an overall geometric
mean reduction of 22.08% in thread migrations. This preliminary study motivates us to
explore automatic compiler transformations to alleviate the overheads arising from running
graph applications on the Emu system.

Future directions: A promising direction for future work is to integrate these compiler
transformations into a domain-specific language and compiler for graph algorithms such
as Green-Marl [79], graphit [80] to generate efficient code for Emu system with a simple
graph algorithm specification as input.
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