Automatic High-Performance Kernel Generation for
DL Accelerators : Specialization to Generalization*

Prasanth Chatarasi

Research Staff Member @ Al Hardware Group,
IBM T.J. Watson Research Center,
YorkTown Heights, NY, USA
https://www.research.ibm.com/artificial-intelligence/hardware/
prasanth@ibm.com

Google Brain, May 26th, 2021

Georgia School of s 8 XI I_l NX

Tech | Computer Science

*Work done during PhD studies in Habanero Research Group
at Georgia Institute of Technology o

<|||

A
o

https://www.research.ibm.com/artificial-intelligence/hardware/
mailto:prasanth@ibm.com

Deep Learning (DL) Accelerators

* Emerged to address the demands of DL models training and inferences
* A large array of processing elements to provide high performance

* Direct communication between PEs for energy efficiency
* PE & PE requires ~3x less energy compared to PE & L2

To/From DRAM

3

compute arra

@l -

¥

ﬁ.‘

v

.
¢

LO Scratchpad

!

Lx Scratchpad <-> CMU q . .
I'“ S I ALU (MAC Unit) ALU (MAC Unit) ALU (MAC Unit)
TPU, Google XDNN, Xilinx RAPID, IBM

Link Clock! Core Clock DCNN Accelerator
>

=

Shared Buffer (L2 Scratch Pad)

Lol
: Network-on-Chip (NoC)

@ = PE =

L1 Scratch Pad P™ | 1 Scratch Pad L1 Scratch Pad

a"
>

$

Q)

LO Scratchpad (X)

. . 7’
Tensor Processing Unit | gk

alg-- gl
£

3

——

= PE =

L1 Scratch Pad »™W | 1 Scratch Pad L1 Scratch Pad

ALU (MAC Unit) ALU (MAC Unit) ALU (MAC Unit)

14x12 PE Array

Filter

Input Image

NVDLA.org

PE PE PE

L1 Scratch Pad P™W |1 Scratch Pad »™W |1 Scratch Pad

ALU (MAC Unit) ALU (MAC Unit) ALU (MAC Unit)

Abstract template

:
64 bits DLA, NVIDIA Al Engine, Xilinx

Eyeriss, MIT 5 (Versal)

Design Architecture of Deep Learning (DL) Compilers

Input format
of DL models

TensorFlow PYTORCH © Caffe2 @xnet 35ER () ONNX ...

.\ / Compiler frontend Hardware specific Low-level IR /
é Optimizations (Dg/'i): ;ast;:;‘l:ﬁi c)
1. Intrinsic mapping
Transformation Computation graph 2. Memory allocation i
Symbolic representation Optimizations 3. Memory latency hidin 1. Halide based
1. - relay (TVM) 1. Algebraic simplification 4. Loop oriented opt Auto 2. Polyhedral
2. > bridge (nGraph) 2. Operator fusion 5. Parallelization Scheduling model based
3. - ATen (TC) 3. Operation sinking 6. (e.g., polyhedral) 3. Other unique
4. - direct translation 4. CSE IRs ...
5 5. DCE
- 6. Static memory planning = .
= 7. Layout transformation Q. Auto-tuning Compilation
- & 8. ° 5 1. Parameterization Scheme
High-level IR/ Graph IR pe Q c 2. Cost model 1. Just-In-Time
(Device independent) 2 £ 2 3. Parameter searching Manual 2. Ahead-Of-Time
. s 2S Scheduling
1. Representation o Methods (o)1 (e.g., Halide
DAG-based g 1. Pattern matcher g - - - & Code generation
Let-binding-based (&) 2. Graph rewriting o Using kernel libraries 1. LLVM
Tensor computation 1. Intel DNNL 2. CUDA
Lambda / Einstein 2. NV cuDNN /TensorRT 3. OpenCL
3. AMD MIOpen
Debug tools 4. Oth tomized lib 4. OpenGL
2. Implementation (IR dumping) . er customized libs 5. ..
Data representation
Operators supported 1. Textform |= |
2. DAG form v
& T Compiler backend
Target CPU GPU ASIC DSP More and more
platforms (X86, ARM, RISC-V) (NVIDIA, AMD) (TPU, Inferentia, NNP, ...) Accelerators

Fig. 2. The overview of commonly adopted design architecture of DL compilers.

Key steps in the flow:
e Graph compiler performing
graph-level optimizations
e e.g., Node/Layer fusion

e Kernel compiler performing
kernel-level optimizations
* e.g., loop scheduling

Li et. al., “The Deep Learning Compiler: A Comprehensive Survey”, ArXived 2020

3

Kernel Compilers of DL Compiler stack

Hardware Intrinsic Mapping E Loop Oriented Optimization Techniques Th ree ma jor approaches for
P ~~, Hardware ; Loop fusion Reordering Unrolling Slide windows -
{_ Joperator w3 TTTTE , P .
I e B N T - R kernel compilers:
| fori=In Jor =i, Lo Jorned, pe & R
i fori=18 | : Stmtl(i forj=lm | | Stmtl(i) : . .
L rjeLs | o L el) smiG) | ' = = e Stitch manually-written
fork=1,8 [L - | Stmt2(i) | l - : :
eynay | L l i 5 kernel libraries for each node
i | S i 1 B o
""""""""""" '"""""."'""""1 for i=1, . foriw=l, Stmtl(2) -
Memory Allocation & Fetching - s:mu';.-) | ,--,:-_.;‘,--1’,",, 5,:,1(3) Fiti Of the Optlmlzed graph
Teansfen E Stmit2(i) - Stmiiy) Stmt1(4) ~| Cache

DRAM =) GPU Memory

----- | ww=l] Dala | papalielization * Automatically generate entire
Data - e GPU Shared Memory | | Halide . Polyhedral _
" Storel. T Do i I Autotuner Rschedules | :_g:_g'b“’b—i qf% % %@ kerne|S CorreSpondlng to eaCh
...... se : fori=In fori=I.n : i .O‘O : E E E
_______________________ e} it 158801 | SEHY node of the graph
p - : Stmt(i,j) for k=1,4 DAL oFFY
emory Latency Hiding : /’— Stmifij*ak) | Ao b A 2 SN I
| : ctoriz Parallelization / . . .
e g — I Vectoriation e Hybrid approach combining
| g S e parattetize”]) 5E5E ' _
1 jex ld . d | 0y 0 1] Tkt || et | OO Nested Polphedra some parts with manually

written kernels and other parts

Fig. 4. Overview of hardware-specific optimizations applied in DL compilers. with automatic generation

Li et. al., “The Deep Learning Compiler: A Comprehensive Survey”, ArXived 2020

4

Manually-written vs Automatically-generated

1. Manually-writing kernels is not a scalable approach, but a good temporary solution!
» Kernels are evolving rapidly, for, e.g., many variants of convolutions with different shapes/sizes
ML Accelerators also evolving so quickly, for, e.g., TPU V1, V2, and V3 with different capabilities
e Need automatic kernel generation along with mappers and cost models that does fine-

grained reasoning of both kernels and hardware to achieve peak performance!

2. Automatic kernel generation is a scalable solution, but several challenges.
e Need “GOOD” hardware abstractions to capture various accelerators
e Need “GOOD” mapping abstractions to capture various mapping strategies of workloads
e Need “GOQOD” cost models to estimate performance and drive mappers/auto-tuners
e Several variants:
e Fixed hardware + Fixed kernel,
 Fixed hardware + Allow different kernel possibilities
e Allow various hardware choices + Allow different kernel possibilities

Overview of today’s talk

. Introduction & Background

. Vyasa: A High-performance Vectorizing Compiler for Tensor Operations onto Xilinx Al

Engine (2D SIMD unit)
* Fixed hardware + Allow different kernel possibilities

. PolyEDDO: A Polyhedral-based Compiler for Explicit De-coupled Data Orchestration

(EDDO) architectures
e Allow various hardware choices + Allow different kernel possibilities

. Conclusions

Overview of today’s talk

1. Introduction & Background

2. Vyasa: A High-performance Vectorizing Compiler for Tensor Operations onto
Xilinx Al Engine (2D SIMD unit)
* Fix hardware + Allow different kernel possibilities

3. PolyEDDO: A Polyhedral-based Compiler for Explicit De-coupled Data Orchestration

(EDDO) architectures
e Allow various hardware choices + Allow different kernel possibilities

4. Conclusions

"Vyasa: A High-Performance Vectorizing Compiler for Tensor Convolutions on the Xilinx Al Engine"
Prasanth Chatarasi, Stephen Neuendorffer, Samuel Bayliss, Kees Vissers, and Vivek Sarkar
Proceedings of the 24th IEEE High Performance Extreme Computing Conference (HPEC'20

& XILINX.

Georgia School of _
Tech | Computer Science

https://pchath.github.io/gatech-webpage/assets/papers/HPEC20-Vyasa.pdf

Xilinx Versal Al Engine

A High Performance & Power Efficient VLIW SIMD Core

e Part of Xilinx Versal Advanced Compute Acceleration Platform
e Scalar Engines (CPUs), Adaptable Engines (Programmable logic), Intelligent Engines (Al Engines)

Al Engine: Terminology

Versal ACAP

Scalar Engines Adaptable Engines

Intelligent Engines | .-~

Al Engine
Array

fersal

verse
Adaptable
Hardware

DSP Engines

Network On Chip (NoC)

- LI
Mutirate 600G
HEM m Ehemet Cores RF
286 GPIO

Fixed-Point
Scalar ALU Vector Vector Unit

Register

Non-linear File Floating-Point
Functions Vector Unit

Scalar Unit Vector Unit Vector Processor

Al Vector
m m m Instruction Fetch Extensions
& Decode Unit
Load UnitA [l Load UnitB [l Store Unit ecode Ln 5G Vector
Extensions .
Memory Interface Stream Interface

Xilinx Public Domain

Key architectural features of Al Engine

Abstract view of Al Engine

Local memory (128KB)

Vector register file (256B)

\l/

Shuffle (interconnect) network

C(/‘\??

L REX o X
L O RER X
s X E R R

Fixed Point SIMD Unit

1) 2D SIMD datapath for fixed point

* Reduction within a row/lane
 #Columns depend on operand precision
e 32-bit types: 8 rows x 1 col
e 16-bit types: 8 rows x 4 col (or)
16 rows x 2 col
 8-bit types: 16 rows x 8 col

2) Shuffle Interconnection network

 Between SIMD and vector register file

e Supports arbitrary selection of elements from
a vector register
* Some constraints for 16-/8-bit types

e Selection parameters are provided via vector
Intrinsics

Problem Statement & Challenges

Problem statement: How to implement high-performance
primitives for tensor convolutions on Al Engine?

e Current practice: Programmers manually use vector intrinsics to program 2D
SIMD unit and also explicitly specify shuffle network parameters for data selection

e Challenges: Error prone, written code may not be portable to a different schedule
or data-layouts, daunting to explore all choices to find best implementation,
tensor convolutions vary in sizes and types

Our approach: Vyasa, a domain-specific compiler to generate high
performance primitives for tensor convolutions from a high-level specification

Vyasa means “compiler” in the Sanskrit language,
and also refers to the sage who first compiled the Mahabharata.

10

Our high-level approach (Vyasa)

Input:

Tensor convolution
specification,
workload sizes

Halide
Modules

Lowering to Halide IR

!

v

1) Translation to Triplet
representation

v

2) Lazy stores

v

optimizations)

Auto-tuner
(exploring
loop and

data-layout

Cycles

A

3) Vector register reuse + handling
unaligned loads, scalar broadcast

l

4) Fusion of vector operations for
the 2D SIMD datapath

¢

5) Code generation (including better
interleaving of loads/stores/MACs)

v
Output:

Optimized c-code

>

Cycle-accurate

simulator

C-code

11

In this talk, | focus on Step-3 and
Step-4 leveraging Shuffle
Network and 2D SIMD datapath!

Running Example — CONV1D

o [= BT Fiondabivn
< ; A ‘ : ‘ for(w=0; w < 4; w++)

S ' — ‘ 16 ' O[X] += I[x+w]*W[w];

A sample schedule: Unroll w-loop and Vectorize x-loop (VLEN: 16)

0 15 18
o1g o= 1015 ([—
O(0:15) += W(1) * I(1:16)

0(0:15) += W/(2) *1(2:17) @

O(0:15) += W/(3) * I(3:18)

w [T T

o1 2 3

12

Challenges

0(0:15) += W(0) * 1(0:15) V1 = VLOAD(I, 0:15);
O(0:15) += W(1) * I(1:16) V2 = BROADCAST(W. 0);
O(0:15) += W(2) * 1(2:17) V3 = VMAC(V1, V2):
0(0:15) += W(3) * I(3:18)
V4 = VLOAD(I, 1:16);
/ V5 = BROADCAST(W., 1):
No support for unaligned loads V3 = VMAC(V3, V4, V),

i V6 = VLOAD(I, 2:17),
No support for broadcast operations V7 = BROADCAST(W, 2);
V3 =VMAC(V3, V6, V7),
V6 and V8 have 15 elements in common.
How to reuse them without loading again? = —— V8 = VLOAD(I, 3:18);
V9 = BROADCAST(W, 3);

} } V3 =VMAC(V3, V8, V9),
How to exploit multiple columng/ > VG 9
of 2D vector substrate? VSTORE(O, 0:15, V3),

13

1) Exploiting Vector Register Reuse

O(0:15) +=
0(0:15) += 1(3:18)

1(0:15) 1(1:16)
O(0:15) += W(0) *)I(0:15)
O(0:15) += -

12:17)

Connected component
Vi — 1(0:31)
e Build “temporal reuse graph” with nodes being vector loads
 Edge exists b/w nodes if there is at least one element in common

* Al Engine allows to create logical vector registers of length up to 1024 bits

* |dentify (aligned) connected components and assign each component to a vector
register that can subsume the individual vector loads of the component.

e Use shuffle interconnection network to select desired elements

14

2) Exploiting Spatial Locality

W(0) w(1)
0(0:15) +=[W(0)* 1(0:15) ’
0(0:15) += ‘
0(0:15) += ” "

0(0:15) +=

Connected component
V2 — W(0:7)

e Build “spatial locality graph” with nodes being scalar loads
* Edge exists b/w nodes if they can be part of an aligned vector load

* |dentify connected components

* Al Engine allows to create logical vector registers of length up to 1024 bits
* Assign each connected component (aligned) to a logical vector register
* Use shuffle interconnection network to select desired elements

15

3) Grouping 1D Vector Operations

0(0:15) +=|W/(0) * 1(0:15)
O(0:15) +=|W(1) * I(1:16)

0(0:15) +=

O(0:15) +=|W(3) * I(3:18)

1(0:15) 1(1:16)

1(3:18)

Connected component
V1 — 1(0:31)

Connected component
V2 — W(0:7)

7

wo [wa | wa [we | wa [we [we | we | V2
O—@—2||[o——
\ Lane 0 y / /ne 15
1(0) I(1) I 1(2) 1(3) 1(4) 1(15) 1(16) 1(17) || 1(18) 1(31) v1
0 31
> a) 0(0:15) = +
0 7
wo) [wo) [we wa) [we [we [we | V2
/ / \\
@6')7@ @_@_@ @—@—?@
ne0 W / Yne 15 \
o [0 [e [Reresee s aenmiaan] «s) ey | V1
0 31

» b) O(0:15) +=

+

All the 4 operations are performed with a single load of V1 and V2 (maximum reuse)

Our high-level approach (Vyasa)

Tensor convolution
specification,
workload sizes

!

Halide
Modules

Lowering to Halide IR
Auto-tuner
* (exploring
1) Translation to Triplet loop and
representation data-layout
‘ optimizations)
A
2) Lazy stores Cycles
v v
Output:

3) Vector register reuse + handling
unaligned loads, scalar broadcast

l

4) Fusion of vector operations for
the 2D SIMD datapath

¢

5) Code generation (including better
interleaving of loads/stores/MACs)

Optimized c-code

Cycle-accurate

>

simulator

C-code

Auto-tuner explores the
space of schedules related to
loop and data-layouts.

Loop transformations:

1. Choice of vectorization loop
2. Loop reordering

3. Loop unroll and jam

Data-layout choices:
1. Data permutation
2. Data tiling (blocking)

We assume that workload memory footprint fits into a Al Engine local
scratchpad memory (128KB)

17

Evaluation

e CONV2D workloads (only for this talk)
e CONV2D in Image processing pipelines/Computer Vision (CV)
HALIDE CODE: O(x, y) += W(r, s) * I(x+r, y+S);
e CONV2D in Convolutional Neural Networks (CNNSs)
HALIDE CODE: O(x, y, k, n) += W(r, s, ¢, k) * I(x+r, y+s, ¢, n);

Al Engine configurations

Parameter 32-bit 16-bit
2D SIMD data path 8 x 1 16 x 2
« Comparison variants Peak compute 8 MACs/cycle | 32 MACGCs/cycle
Scratchpad memory 128 KB @ 96B/cycle
* Roofline peak Scratchpad memory ports 32B 2 read and 1 write
e 32-bit types: 8 MACs/cycle Vector register file 256 B

* 16-bit types: 32 MACs/cycle
e Expert-written and tuned kernels for Computer Vision

18

Evaluation: CONV2D’s in CV (256x16)

HALIDE CODE: O(x, y) += W(r, S) * I(x+r, y+s);

40
B Expert-Written | Our approach with auto-tuner Al Engine Peak

32.00 32.00 32.00
30

23.30 23.65 22.69

21.76

MACs/Cycle
)
o

10 7.83 8.00 755 7.91 8.00

6.85 I
0

3x3 (32-bit) 5x5 (32-bit) 3x3 (16-bit) 5x5 (16-bit) Geo. Mean (32-bit) Geo. Mean (16-bit)

700 [-87 8.00

* Expert-written codes are available only for 3x3 and 5x5 filters
* Available as part of the Xilinx’s Al Engine compiler infrastructure

* Auto-tuner was able to find better schedules
e Especially non-trivial unroll and jam factors

19

Evaluation: CONV2D’s in CV (256x16) with various Filters

50

Our approach with auto-tuner for 32-bit types (Al Engine Peak : 8 MACs/cycles)
44 B Our approach with auto-tuner for 16-bit types (Al Engine Peak : 32 MACs/cycles)
38

w
e

28.53 57 54 29.33 2845
. 7.08
25.92

26.20 26.49
23.65
21.59 21.76
762I 783I 7.85 791I 7.88 7.91 7.6 7.63 7. 99 796 7.67
0
2x2 3x3 4x4 5x5 6x6 X7 8x8 9x9

10x10 11x11 Geo. Mean

MACs/Cycle
c o

-
w

o

* Fven-sized filters (except 2x2), our approach achieved close to peak
e 87% for 16-bit and 95% for 32-bit

 Odd-sized filters, our approach padded each row with an additional column
* For 16-bit type, number of reductions should be multiple of two (2 columns)

20

Evaluation: CONV2D’s in CNN’s (128x2x16)

HALIDE CODE for REG CONV2D: O(x, y, k, n) += W(r, s, ¢, k) * I(x+r, y+s, c, n);

40
Our approach with auto-tuner for 32-bit types (Al Engine Peak: 8 MACs/cycles)
35 B Our approach with auto-tuner for 16-bit types (Al Engine Peak: 32 MACs/cycles)
30 28.37
() 26.60
D 25 24.94
5, 22.62 22.47 22.34 22.53
> 20 19.69
O 15.77
<< 15
=
101 719 7.45 7.83 7.75 7.89 7.88 7 46 7.94 767
5
0
REG-3x3 REG-5x5 REG-7x7 PW-1x1 SS-1x3 S$S-3x1 DS-3x3 FC-1x1 Geo. Mean

e REG-CONV2D (3x3, 5x5, 7x7)

e \ectorization along Output width and Reduction along Filter channels
e PW-CONV2D (1x1), SS-CONV2D (1x3, 3x1), FC-CONV2D (1x1)

* Vectorization along Output channels and Reduction along Filter channels
e DS-CONV2D (3x3) — Padded each row

* Vectorization along Output width and Reduction along Filter width

21

Non-trivial data-layout choices

},

. AR 4R AR4 L YIVIYV ¥V L

Input layout scheme (C/2)Y’X’(2)

==

A &

W1]
12

"1

Fused Vector Multiplication: W1 * 1 + *

Weights layout scheme K(C/2)RS(2)

e 16-bit REG-CONV2D (3x3)
* Vectorization along Output width and Reduction along Filter channels
* For the fused vector operation (W1xI1 + W2 x 12)
e Data for (I1, 12) should be in a single vector register for the operation
* |1(0) and 12(0) should be adjacent for shuffle network constraints

e (C/2)Y’X’(2) refers to first laying out an input block of two channels followed by width,

height, and remaining channels.
22

Summary and Questions

e Summary

 Manually writing vector code for high-performant tensor convolutions achieving
peak performance is extremely challenging!

e Automatic kernel generation can be the key!
* Proposed a convolution-specific IR for easier analysis and transformations

e Qur approach (Vyasa) can work for any convolution variant regardless of its
variations and shapes/sizes.

* Achieved close to the peak performance for a variety of tensor convolutions

e Questions
* How about beyond tensor-style operations?

* E.g., fused convolutions (depth-wise + point-wise), non-rectilinear iteration spaces
(Symmetric GEMM)

* How about beyond the Al Engine?
* E.g., other accelerators like IBM Rapid, MIT Eyeriss, NVDLA...

23

Overview of today’s talk

Introduction & Background

. Vyasa: A High-performance Vectorizing Compiler for Tensor Operations onto Xilinx Al

Engine (2D SIMD unit)
* Fixed hardware + Allow different kernel possibilities

PolyEDDO: A Polyhedral-based Compiler for Explicit De-coupled Data

Orchestration (EDDOQO) architectures
e Allow various hardware choices + Allow different kernel possibilities

Conclusions

"Hardware Abstractions for targeting EDDO Architectures with the Polyhedral Model"
Angshuman Parashar, Prasanth Chatarasi, and Po-An Tsai,
11th International Workshop on Polyhedral Compilation Techniques (IMPACT'21)

Georgia School of _
Tech | Computer Science

NVIDIA.

24

https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_6.pdf

L1

|ICDO vs EDDO Architectures

Implicit Coupled Data Orchestration (ICDO)
e.g., CPUs, GPUs

,ﬂ' .

Datapaths

Explicit Decoupled Data Orchestration (EDDO)

e.g., IBM Rapid Al, NVIDIA Simba, NVDLA, Eyeriss, etc.

Addr Gen

B

L3

. Dlstributo
Addr Gen
. 4

-m'

D1str1buto

— Collector —]

L1 RegFﬂe File | RegFile | RegFile | RegFile | RegFile | RegFile | RegFile

Datapaths

EDDO architectures attempt to minimize data movement costs

EDDO Architectures

Benefits

Dedicated (and often statically
programmed) state machines
more efficient than general
cores

Perfect “prefetching”

Buffet storage idiom provides
fine-grain synchronization and
efficient storage, or scratchpads
+ Send/Recv synchronization

Hardware mechanisms for reuse

Explicit Decoupled Data Orchestration (EDDO)
e.g., IBM Rapid Al, NVIDIA Simba, NVDLA, Eyeriss, etc.

Addr Gen

L3

Addr Gen .

Buffer

KWl RegFile | RegFile | RegFile | RegFile | RegFile | RegFile | RegFile | RegFile

-_>x_>x_>x_’x"’><—>x—>x

Datapaths

Pellauer et. al., “Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration”, ASPLOS 2019

20

EDDO Architectures

Explicit Decoupled Data Orchestration (EDDO)
e.g., IBM Rapid Al, NVIDIA Simba, NVDLA, Eyeriss, etc.

Challenges

No single binary: Collection of distinct
binaries that program distributed state
machines working together to execute

Addr Gen

algorithm =

E.g., CNN layer on EDDO arch - ~250 distinct state L3 DRAM

machines. ‘
Reuse optimization is critical for efficiency B

E.g., CNN layer on EDDO arch > 480,000 mappings, 11x Addr Gen ‘ ‘

spread in energy efficiency, 1 optimal mapping .

Need an optimizer or mapper L2

. Distributo .
Ma ping . Addr Gen r Collector
Workload — (oM’?iﬁwpi(zegr) O Gen(e)raetor [Binarles .
P KWl RegFile | RegFile | RegFile | RegFile | RegFile | RegFile | RegFile | RegFile

Variety of EDDO architectures, constantly ' ' : ' ' ' ' '
evolving - X X X X X X X

Need an abstraction that Mapper and Code Generator will Datapaths

target

27

Workload

EDDO Architecture
described using Hardware

Overall Compilation Flow

/

<

Mapper *
(optimizer)

~

Mapping
()

/

>

—/

Perf, Energy, Area

<

PolyEDDO Code Generator

\

Arch-
independent
decoupled

prcfgms Arch-specific

4

-

Space-Time (HST)

L

W, configuratio
n generator

Data-movement
activity counts

\
Analytical
microarchitecture and
energy model T
/

N

—— Configuration Binaries

*t Parashar et. al., “Timeloop: Timeloop: A Systematic Approach to DNN Accelerator Evaluation”, ISPASS 2019
T Wu et. al., “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs”, ICCAD 2019

28

Example1l — Symbolic Hardware Space-Time (SHST)

: I

L1 X X X X

MACCs

SpaceTime, [s,, t;] = SpaceTime, [s4, t4] :

S2=O&t2=0 &
OSS1<4&OSt1<3

L2)

i

Single L2, 4 L1s, 3 time-steps

* |In each step, the L2 delivers a tile of data to
each L1

* Across all these L1 time steps, the resident tile
in L2 does not change. In effect, time is
stagnant for L2

29

Example2 — Symbolic Hardware Space-Time (SHST)

SpaceTime4[0,0] = SpaceTime,[1,1]

SpaceTimey [s5, t3] = [SpaceTime, [s,, t,] = SpaceTime, [s4, t,]] :
L1
s3=0 t;=0 4
>
51

L1 X X X X X X X X

0<s,<2 O0<t,<2
0<s,<4 0<t,<3

SpaceTime;[0,0] = [SpaceTime,[1,0] = SpaceTime, [2,1]]

30

Example3 — Partitioned Buffers
)

L3 @
L2
t,/ |
> | | BufB | Bufz
" R N
= S, A 3 > Va4 Q!\

n
"@,’»

LER TR >« BT TEN

OperandB

Workload mappings target SHST

SHST SpaceTimes [, t;] = [SpaceTime, [s,, t,] = SpaceTime, [s4, t4]] PHST

OHST(DRAM) = SpaceTime; [0, 0] — DRAM [s3, 15]
OHST(BufA) = SpaceTime, [0, 0] = SpaceTime, [s,, t,] — BufA[s,, 1]

— OHST(BufB) = SpaceTime, [0, 0] = SpaceTime, [s, t,] — BufB [s,, 1,]

c£ < OHsT(BufZ) = SpaceTime, [0, 0] = SpaceTime, [s,, t,] — BufZ [s,, t,]
O"T(OperandA) = SpaceTimes [0, 0] = [SpaceTime, [s,, t,] = SpaceTime, [s,, t,]] — OperandA [2s, + 54, 15, t4]
O"T(OperandB) = SpaceTimes [0, 0] = [SpaceTime, [s,, t,] = SpaceTime, [s,, t,]] — OperandB [2s, + s4, t,, 4]

_ OHT(Result) = SpaceTime, [0, 0] = [SpaceTime, [s,, t,] — SpaceTime, (54, 14]] — Result [2s, + 54, 15, 1]

Example4 — Eyeriss-like accelerator

6 DRAM

SHST: SpaceTime, [s4, t,] = SpaceTimes [s5, t;]1 = [SpaceTime, [s,, t,] = SpaceTime, [s4, ,]]

See paper for full HST ! ‘
©) N\
L
@ DiagBroadcaster I | | | | | \
Observe how different the architecture is e OperandA
fI’Om CPUS and GPUS - :I OperandB
RowBuffer . Result
-“g ﬁ ColSpatialReducer
\g | J
S

Workload mappings target SHST

. . - . ColBuffer /

-

32

PolyEDDO Code Generator

Architecture HST

Workload —‘
Mapping T

\ 4

T-relation Tiling (T)-rilations
generation

, Data Transfer (X)-relations
Decoupling Y

Reuse Delta (A)-reIlations
Analysis

Schedule A schedules
creation v

AST Decoupled A:STS
generation

33

Mapping workloads (Tensor operations)

SHST

fn

Vo

Workload
Iteration
Space N

v
Tilel
any

-

Project

Vi

Mapping workloads (The Tiling-relation, T-relation)

SHST

Set of Tensor
Coords

SpaceTime4[0,0] = SpaceTime,[1,1] — MatrixA[m,K] : ...

that point in space-time to honor the mapping.
* Does not tell you how the data got there.

MatrixB[k,n] : ...
MatrixZ[m,n] : ...
L2
t2
; T-relation: Projection from SHST coordinate
to a set of tensor coordinates
; t « Tells you what tiles of data must be present at
|;/ 51 >

— MatrixA[m,k] : ...
MatrixB[k,n] : ...
MatrixZ[m,n] : ...

L1 Set of Tensor
t, t A Coords
- SpaceTime4[0,0] = [SpaceTime,[1,0] = SpaceTime, [2,1]]
>
S, S1

35

Decoupling — Breaking the hierarchy

e SHST

L3
PHST

2 R SO BT] iz
N\ W7
ﬂnﬂ Pq I:Inlj I:ln r_'||'-"r_‘| ﬂﬂﬂ o“o tltltl
L1 X X\ x X X)) & & L
Oper;ndA: Re;ult MACCs

OperandB

Decouple

36

Data transfer relations Tensor

PHST (X-relations) coords

[DRAM[s3, t3] -> BufA[s2, t2]] -> W[k,
r] : ..

[BufA[s2, t2] -> OperandA[sl, tl]] -> W[k,

r] : ..
L1 o0Po oPo oPfo obfo oPo oPBo oPo oPo
X X X X X X X X #

MACCs

[MACC[sl, tl1]] -> MulAcclk, p, r] :

SSSSSSSSSSSSS

*/

ﬁfﬁf/ ﬁﬁﬂ/

REUSE ANALYSIS

*/

S

REUSE ANALYSIS

O O
O O
Q
L2 @
oo @
-
: Fill from parent

REUSE ANALYSIS

12 ()

Parent Multicast/
Spatial Reduction

OPTIMIZATION PROBLEM (FOR A SINGLE MAPPING!)

Local Reuse Options:

Enumerate all possibilities and find
optimum solution

> From Parent Use a heuristic

Expose choices to mapping (and thereby
the mapspace)

From Peer A From Peer B

Architecture HST

Workload ﬁ
Mapping

1 3

A 4

~

T-relation
generation

< >

POLYEDDO

Tiling (T)-r
4 N
Decoupling
S /

Data Trans

‘er (X)-relations

Y

-

<

Reuse
Analysis

~

/

Delta (A)-rila.ﬁ.o.ns

Schedule
creation

A schedulesl
\ 4

. AST
: : u generation
Described in paper

Decoupled A:STS

42

<Z NVIDIA.

EXAMPLE OUTPUT

// Program to read Weights from DRAM into RowBuffer.
if (P >= 1)
for (int c3 = 8; ¢c3 <= min(15, K - 1); c3 += 1)
for (int c4 = 0; ¢4 <= min(2, R - 1); c4 += 1)
ACTION READ("'DRAM", "DRAM", "RowButfer", "Weights", 2)(@, @, c4, 0, c3, c4);

// Program to read Inputs from DRAM into DiagBuffer.
if (K>=1& 8 P >=1&& R >= 1)
for (int c3 = 8; ¢3 <= min(min(min(15, P + 1), P+ R - 2), R + 12); c3 += 1)
ACTION READ("DRAM", "DRAM", "DiagBuffer", "Inputs", 1)(e, ®, c3, 0, c3);

// Program to read Outputs from DRAM into ColBuffer.
if (R == 1)
for (int c3 =
for (int c4 = 0; ¢4 <= min(13, P - 1); c4
ACTIDN_READ_IU('DRA*‘, 'DRAM", "ColBuffer®,

B; c3 == min(15, K - 1); c3 += 1)
+= 1)
‘Outputs", 2)(0, @, c4, 8, c3, c4);

// Program to read Weights from RowBuffer into RowBroadcaster.
if (P =>=1) {
for (int c2 = 0; ¢2 <= min(15, K - 1); c2 += 1)
for (int c4 = 0; ¢4 == min(2, R - 1}); c4 += 1)
ACTION READ("RowBuffer", "RowBuffer", "RowBroadcaster",
for (int c3 = 8; €3 <= min(15, K - 1); €3 += 1)
for (int ¢4 =0; c4 == min(2, R - 1); c4 += 1)
ACTION SHRINK('FowBuffer”, "RowBuffer", "Weights", 2)(0, ©, c4, 0, c3, c4);

‘Weights", 2)(c4, 0, c4, c2, c2, c4);

}

// Program to read Inputs from DiagBuffer into DiagBroadcaster.
if (K>=16&& P>=1&4R >=1) {
for (int c3 = 8; ¢3 <= min(min({min(15, P + 1), P+ R - 2), R + 12); c3 += 1)
ACTION READ("DiagBuffer", "DiagBuffer", "DiagBroadcaster", "Inputs", 1)(c3, ©, ¢3, 0, c3);
for (int c3 = 8; ¢3 <= min(min({min(15, P + 1), P+ R - 2), R + 12); c3 += 1)
ACTION SHRINK('DizgBuffer", "DiagBuifer”, "Inputs", 1)(®, ©, c3, @, c3);
}

// Program to read Outputs from ColBuffer into ColSpatialReducer.
if (R>=1) {
for (int c2 = 0; c2 == min(15, K - 1); c2 += 1)
for (int c4 = 0; ¢4 <= min(13, P - 1); c4 += 1)
ACTION READ IU("ColBuffer", "ColBuffer", "ColSpatialReducer", "Outputs", 2)(c4, 0, c4, c2, c2, c4)=
for (int c2 = 0; c3 == min(15, K - 1); c3 += 1)
for (int c4 = 0; ¢4 <= min(13, P - 1); c4 += 1)
ACTION UPDATE("'ColButter™, "DRAM", Y, "Outputst, 2)(0, 0, c4, 8, c3, c4);

'ColBuffer

}

// Program to read Weights from RowBroadcaster into OperandA.

(<]

// Program to read Inputs from DiagBroadcaster into OperandB.
if (K >=1) {
for (int c3 = 0; ¢3 <= min(min(min(é, P + 1), P+ R - 2}, R+ 3); c3 += 1)
for (int c8 =
ACTION READ("'DizgBroadcaster”,
if (K=>=16 & P >= 1 && R >= 1) {
for (int c3 = 0; ¢3 <= min(min(min(15, P + 1), P+ R - 2}, R + 12); c3 += 1)
ACTION SHRINK("DiagBroadcaster", "DiagBroadcaster”, "Inputs", 1)(c¢3, @, €3, 15, c3);
} else if (K==15 & P >=1 &5 R >= 1) {
for (int c3 = 0; ¢3 == min(min(min(15, P+ 1), P+ R - 2}, R + 12); c3 += 1)
ACTION SHRINK('DiagBroadcaster”, "DiagBroadcaster”, "Inputs”, 1)(c3, @, c3, K - 1, c3);

jperandB”, "Inputs", 1)(c3, @, c8, @, c3);

'DiagBroadcaster”, "0

}
}

// Program to read Outputs from ColSpatialReducer into Result.
if (R == 1)
for (int c8 = 0; c® == min(15, K - 1); c® += 1) {
for (int c4 = 0; c4 <= min(4, P - 1); c4 += 1)
for (int ¢c8 = c4; c8B == min(5 * R+ ¢4 - 5, c4 + 10); c8 += 5)
ACTION READ IU("ColSpatialReducer”, 1SpatialReducer”, "Result",
for (int ¢4 = 0; ¢4 == min(13, P - 1); c4 += 1)
ACTION UPDATE("ColSpatialReducer”, "ColBuffer”,

}

// Program to compute Multiply at Multiplier.
for (int c = 0; c® == 15; cd += 1) {
for (int c4 = 0; c4 == 4; c4 += 1)
for (int c5 =0; ¢5 <= 2; ¢5 += 1)
COMPUTE Multiplier Multiply(c4 + 5 * ¢5, c@, c@, c4, ¢5);
if (K=>=c¢co + 1) {
for (int c4 = 0; c4 <= min(4, P - 1); c4 += 1)
for (int c6 = c4; c6 <= min(5 * R+ c4 - 5, c4 + 18); c6 += 5)
ACTION UPDATE('Multiplier", "ColSpatialReducer”, "Result”, "Outputs", 2)(c4, c@, c6, cO, cb, c4);
if (K==15 &8 cO® + 1 == K) {

& 4)

s 4)

for (int c3 = 0; ¢3 <= min(min{min(min(6, K - 2), P+ 1), P+ R - 2), R+ 3); 3 += 1)
for (int c6 = max(max(5 * ¢3 - 16, c3), -4 * P+ 5 * ¢c3 + 4); c6 <= min(min(4 * R + c3 - 4, 5 * ¢c3), 3 +
ACTION SHRINK('Multiplier®, "Operandg", "Inputs", 1)(ec3, K - 1, ¢6, K - 1, c3);
} else if (c® == 15) {
for (int c3 = 0; ¢3 <= min(min(min(6, P + 1), P+ R - 2), R+ 3); c3 += 1)
for (int c6 = max(max(5 * ¢3 - 16, c3), -4 * P+ 5 * ¢3 + 4); c6 <= min(min(4 * R + c3 - 4, 5 * ¢3), 3 +
ACTIDN_SHRINK(!Htlwl’?l NnoaranAD N ' Tonute W W] 1= sl = 1= ~2N .
} ° . N °
for (int 2= 0; ca < miniz, ® Present capability: build generated code
for (int c6 =5 * c4; b <= . .
actron ek eo @against an EDDO emulator (automatically

configured from the PHST)

max(max(5 * ¢3 - 16, c3), -4 * P+ 5 * c3 + 4); ¢c8 <= min(min(4 * R+ c3 - 4, 5 #* c3), c3 + 8);

"Outputs", 2)(c4, c@, c8, cB, cB, c4);

'ColSpatialReducer”, "Outputs", 2)(c4, 0, c4, c@, c0, cd4);

Summary and Questions?

e Summary

e HST (Hardware Space-Time) — an abstraction for EDDO architectures represented
using the Polyhedral Model

e PolyEDDO (WIP) — an analysis and code-generation flow based on HST

e Research questions

e How do we think about mapping imperfectly-nested loops to generic EDDO
architectures?

* How do we capture sparsity extensions of the accelerators?

44

Acknowledgments

e Ph.D. Advisors:
e Vivek Sarkar (advisor), and Jun Shirako (co-advisor)

e Collaborators
e Albert Cohen, Martin Kong, Tushar Krishna, Hyoukjun Kwon, John Mellor-
Crummey, Karthik Murthy, Stephen Neuendorffer, Angshuman Parashar,
Micheal Pellauer, Kees Vissers, and others

e Other mentors
e Kesav Nori, Uday Bondhugula, Milind Chabbi, Shams Imam, Deepak

Majeti, Rishi Surendran, and others

e |IBM Research, Habanero & Synergy Research Group Members

45

Backup

Why do we need accelerators?

1) DNN models have tight constraints on latency, throughput, and
energy consumption, esp. on edge devices

2) DNN models have trillions of computations
Need high throughput — Makes CPUs inefficient

3) DNN models involve heavy data movement
Need to reduce energy — Makes GPUs inefficient

Data Movement Energy Cost

S

RF ALU
1x (Reference)

47

Landscape of DNN Accelerators

Al Chip Landscape

V0.6 Oct., 2019

Sl

— Tech Giants/System — — IC Vender/Fabless —r — Startup in China — Startup Worldwide T IP/Design Sevice —
/j * NNP/Myriad :
Go gle = TPU @ie,l EyeQ/ANni)’a"FPG)X Seineon * MLU100/270 @r FPGA/eFPGA arm
| SAMSUNG * Exynos 9825 -y S Joumey s - SYnopsys
mn Microsoft WVAVE logid DIEFINIX
* Volta/Turing BITMAIN » BMI1682/1880
@ANVIDIA. VoL G . o Qg
imellL Tusion « DeepEyel000 pl. .Pmu © Processing in Memory imaginahon
w * Snapdragon 855/ EXEY
Cloud Al 100 CEVA
aws = Inferentia AMDa « EPYC = QuestCore I‘IIlARE NINA gyrfalcon
— #habana W GANBOARD/ -
ELL] o) -
‘ N £ XILINX. * VERSAL E i'.?f'?jﬁ * N7t * Gaudi/oya o’ Lightspeeur cadence
« Heli . HAILO
— AN f 0 ey * Hailo-8 Optical Computing B sifie
==372 UNISOC * Tiger T710 artosyn . S ot f
@ 5 o @ thinci : ARTERISI
ﬂ ﬂ; LIGHTELLIC S LGB EHATIES
- &~ * HanguangB00, 1 = A
Alibaba Group TG6100N A qi * Voitist611 KALRAY aoortec
PO 5 1 Rocket « RK3399Pr0 * MPPA2-256 q i
“ < Aacand e . CV225/255 « TX101/210/510 groq Design service with
' Ambareiia In-house IP
- : K « GXB010 fZEs TAIBOI0 Tachyum” Neuromorphic B siicon
Bai¥m® N oicTX
i = HuaShan SBE
o ! Automated Driving i & coperanto brainchip” © BROADCOM'
i S 4
T, : ’ GUC
5 {Enfiame PEZY Computing ARistered (S INNOGRIT
Hewlett Pack m.uaﬂﬁ « Shasta/Rainier/Tacoma i ictp
Enterprise ; 8,
RENESAS Servoe e eta Compute (@eron @ 4
FU]?TSU * DLU A - *EQM3Sa = KL520 AISTORM & FARADAY
TOSHIBA » CHOOX/T10X lu;t * K002 SR
s GREENWAVES }) &5 rovumino
172 =AM MSPEICH W am « GAPR ’
2L RERE e Maore at https://basicmi.github.io/Al-Chip/
Compilers Benchmarks
Western Digital. - '
- T TensorFiow| ¥ | OcLow % OctoML CAnviDIA.| 7oneoriT « AI - Benchmark Al Matrix.
MLIR MLPerf
NOKIA
' The Tensor Algebra £ -
Qpbu;ﬂ ¢ nGraph 5 # DAWNBench M
D .+ nGrap Compiler (taco) Spizwereannn W “m

All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date,

48

