
Automatic High-Performance Kernel Generation for
DL Accelerators : Specialization to Generalization*

Prasanth Chatarasi
Research Staff Member @ AI Hardware Group,

IBM T.J. Watson Research Center,

YorkTown Heights, NY, USA

https://www.research.ibm.com/artificial-intelligence/hardware/

prasanth@ibm.com

Google Brain, May 26th, 2021

*Work done during PhD studies in Habanero Research Group

at Georgia Institute of Technology

https://www.research.ibm.com/artificial-intelligence/hardware/
mailto:prasanth@ibm.com

Deep Learning (DL) Accelerators
• Emerged to address the demands of DL models training and inferences
• A large array of processing elements to provide high performance

• Direct communication between PEs for energy efficiency

• PE & PE requires ~3x less energy compared to PE & L2

2

PE

Shared Buffer (L2 Scratch Pad)

Network-on-Chip (NoC)

L1 Scratch Pad

ALU (MAC Unit)

To/From DRAM

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

DRAM unit

Abstract template
Eyeriss, MIT

TPU, Google xDNN, Xilinx RAPID, IBM

DLA, NVIDIA AI Engine, Xilinx
(Versal)

Design Architecture of Deep Learning (DL) Compilers

3

Li et. al., “The Deep Learning Compiler: A Comprehensive Survey”, ArXived 2020

Key steps in the flow:
• Graph compiler performing

graph-level optimizations

• e.g., Node/Layer fusion

• Kernel compiler performing
kernel-level optimizations

• e.g., loop scheduling

Kernel Compilers of DL Compiler stack

4

Li et. al., “The Deep Learning Compiler: A Comprehensive Survey”, ArXived 2020

Three major approaches for
kernel compilers:
• Stitch manually-written

kernel libraries for each node
of the optimized graph

• Automatically generate entire
kernels corresponding to each
node of the graph

• Hybrid approach combining
some parts with manually-
written kernels and other parts
with automatic generation

Manually-written vs Automatically-generated

5

1. Manually-writing kernels is not a scalable approach, but a good temporary solution!
• Kernels are evolving rapidly, for, e.g., many variants of convolutions with different shapes/sizes

• ML Accelerators also evolving so quickly, for, e.g., TPU V1, V2, and V3 with different capabilities

• Need automatic kernel generation along with mappers and cost models that does fine-

grained reasoning of both kernels and hardware to achieve peak performance!

2. Automatic kernel generation is a scalable solution, but several challenges.
• Need “GOOD” hardware abstractions to capture various accelerators

• Need “GOOD” mapping abstractions to capture various mapping strategies of workloads

• Need “GOOD” cost models to estimate performance and drive mappers/auto-tuners

• Several variants:

• Fixed hardware + Fixed kernel,

• Fixed hardware + Allow different kernel possibilities

• Allow various hardware choices + Allow different kernel possibilities

Overview of today’s talk

6

1. Introduction & Background

2. Vyasa: A High-performance Vectorizing Compiler for Tensor Operations onto Xilinx AI
Engine (2D SIMD unit)

• Fixed hardware + Allow different kernel possibilities

3. PolyEDDO: A Polyhedral-based Compiler for Explicit De-coupled Data Orchestration
(EDDO) architectures

• Allow various hardware choices + Allow different kernel possibilities

4. Conclusions

Overview of today’s talk

7

1. Introduction & Background

2. Vyasa: A High-performance Vectorizing Compiler for Tensor Operations onto
Xilinx AI Engine (2D SIMD unit)
• Fix hardware + Allow different kernel possibilities

3. PolyEDDO: A Polyhedral-based Compiler for Explicit De-coupled Data Orchestration
(EDDO) architectures

• Allow various hardware choices + Allow different kernel possibilities

4. Conclusions
"Vyasa: A High-Performance Vectorizing Compiler for Tensor Convolutions on the Xilinx AI Engine"

Prasanth Chatarasi, Stephen Neuendorffer, Samuel Bayliss, Kees Vissers, and Vivek Sarkar  
Proceedings of the 24th IEEE High Performance Extreme Computing Conference (HPEC'20)

https://pchath.github.io/gatech-webpage/assets/papers/HPEC20-Vyasa.pdf

Xilinx Versal AI Engine
• A High Performance & Power Efficient VLIW SIMD Core
• Part of Xilinx Versal Advanced Compute Acceleration Platform

• Scalar Engines (CPUs), Adaptable Engines (Programmable logic), Intelligent Engines (AI Engines)

8 Xilinx Public Domain

Key architectural features of AI Engine

9

….

….

….

…
.

L0

L1

L15

C0 C1

Shuffle (interconnect) network

Vector register file (256B)

Local memory (128KB)

…
.

…
.

…
.

C7

Fixed Point SIMD Unit

Abstract view of AI Engine 1) 2D SIMD datapath for fixed point

2) Shuffle Interconnection network
• Between SIMD and vector register file

• Supports arbitrary selection of elements from

a vector register

• Some constraints for 16-/8-bit types

• Selection parameters are provided via vector
intrinsics

• Reduction within a row/lane

• #Columns depend on operand precision

• 32-bit types: 8 rows x 1 col

• 16-bit types: 8 rows x 4 col (or)

 16 rows x 2 col

• 8-bit types: 16 rows x 8 col

Problem Statement & Challenges

10

Problem statement: How to implement high-performance
primitives for tensor convolutions on AI Engine?

• Current practice: Programmers manually use vector intrinsics to program 2D
SIMD unit and also explicitly specify shuffle network parameters for data selection

Our approach: Vyasa, a domain-specific compiler to generate high
performance primitives for tensor convolutions from a high-level specification

• Challenges: Error prone, written code may not be portable to a different schedule
or data-layouts, daunting to explore all choices to find best implementation,
tensor convolutions vary in sizes and types

Vyasa means “compiler” in the Sanskrit language,

and also refers to the sage who first compiled the Mahabharata.

Our high-level approach (Vyasa)

11

In this talk, I focus on Step-3 and
Step-4 leveraging Shuffle

Network and 2D SIMD datapath!

⊗

0

0 1815

W

I

Running Example — CONV1D

12

for(x=0; x < 16; x++)

 for(w=0; w < 4; w++)

 O[x] += I[x+w]*W[w];

A sample schedule: Unroll w-loop and Vectorize x-loop (VLEN: 16)

 O(0:15) += W(0) * I(0:15)

 O(0:15) += W(1) * I(1:16)

 O(0:15) += W(2) * I(2:17)

 O(0:15) += W(3) * I(3:18)

1 2 3

Input Weight Output=⊗
16419

Challenges

13

 V1 = VLOAD(I, 0:15);

 V2 = BROADCAST(W, 0);

 V3 = VMAC(V1, V2);

 V4 = VLOAD(I, 1:16);

 V5 = BROADCAST(W, 1);

 V3 = VMAC(V3, V4, V5);

 V6 = VLOAD(I, 2:17);

 V7 = BROADCAST(W, 2);

 V3 = VMAC(V3, V6, V7);

 V8 = VLOAD(I, 3:18);

 V9 = BROADCAST(W, 3);

 V3 = VMAC(V3, V8, V9);

 VSTORE(O, 0:15, V3);

No support for unaligned loads

 O(0:15) += W(0) * I(0:15)

 O(0:15) += W(1) * I(1:16)

 O(0:15) += W(2) * I(2:17)

 O(0:15) += W(3) * I(3:18)

No support for broadcast operations

V6 and V8 have 15 elements in common.

How to reuse them without loading again?

How to exploit multiple columns

of 2D vector substrate?

1) Exploiting Vector Register Reuse

14

• Build “temporal reuse graph” with nodes being vector loads

• Edge exists b/w nodes if there is at least one element in common

• AI Engine allows to create logical vector registers of length up to 1024 bits

• Identify (aligned) connected components and assign each component to a vector

register that can subsume the individual vector loads of the component.

• Use shuffle interconnection network to select desired elements

 O(0:15) += W(0) * I(0:15)

 O(0:15) += W(1) * I(1:16)

 O(0:15) += W(2) * I(2:17)

 O(0:15) += W(3) * I(3:18)

2) Exploiting Spatial Locality

15

• Build “spatial locality graph” with nodes being scalar loads

• Edge exists b/w nodes if they can be part of an aligned vector load

• Identify connected components

• AI Engine allows to create logical vector registers of length up to 1024 bits

• Assign each connected component (aligned) to a logical vector register

• Use shuffle interconnection network to select desired elements

 O(0:15) += W(0) * I(0:15)

 O(0:15) += W(1) * I(1:16)

 O(0:15) += W(2) * I(2:17)

 O(0:15) += W(3) * I(3:18)

3) Grouping 1D Vector Operations
 O(0:15) += W(0) * I(0:15)

 O(0:15) += W(1) * I(1:16)

 O(0:15) += W(2) * I(2:17)

 O(0:15) += W(3) * I(3:18)

All the 4 operations are performed with a single load of V1 and V2 (maximum reuse)

Our high-level approach (Vyasa)

17

Auto-tuner explores the
space of schedules related to

loop and data-layouts.

Loop transformations:
1. Choice of vectorization loop

2. Loop reordering

3. Loop unroll and jam

Data-layout choices:
1. Data permutation

2. Data tiling (blocking)

We assume that workload memory footprint fits into a AI Engine local
scratchpad memory (128KB)

Evaluation

18

• Comparison variants
• Roofline peak

• 32-bit types: 8 MACs/cycle

• 16-bit types: 32 MACs/cycle

• Expert-written and tuned kernels for Computer Vision

AI Engine configurations

• CONV2D workloads (only for this talk)
• CONV2D in Image processing pipelines/Computer Vision (CV)

 HALIDE CODE: O(x, y) += W(r, s) * I(x+r, y+s);

• CONV2D in Convolutional Neural Networks (CNNs)

HALIDE CODE: O(x, y, k, n) += W(r, s, c, k) * I(x+r, y+s, c, n);

Evaluation: CONV2D’s in CV (256x16)

19

• Expert-written codes are available only for 3x3 and 5x5 filters
• Available as part of the Xilinx’s AI Engine compiler infrastructure

• Auto-tuner was able to find better schedules

• Especially non-trivial unroll and jam factors

M
AC

s/
C

yc
le

0

10

20

30

40

3x3 (32-bit) 5x5 (32-bit) 3x3 (16-bit) 5x5 (16-bit) Geo. Mean (32-bit) Geo. Mean (16-bit)

32.00

8.00

32.0032.00

8.008.00

22.69

7.87

23.65
21.76

7.917.83

20.45

7.20

23.30

17.95

7.556.85

Expert-Written Our approach with auto-tuner AI Engine Peak

 HALIDE CODE: O(x, y) += W(r, s) * I(x+r, y+s);

Evaluation: CONV2D’s in CV (256x16) with various Filters

20

• Even-sized filters (except 2x2), our approach achieved close to peak
• 87% for 16-bit and 95% for 32-bit

• Odd-sized filters, our approach padded each row with an additional column
• For 16-bit type, number of reductions should be multiple of two (2 columns)

M
AC

s/
C

yc
le

0

6

13

19

25

31

38

44

50

2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11 Geo. Mean

25.9227.0828.45
26.49

29.33
26.2027.54

23.65

28.53

21.7621.59

7.677.267.227.637.607.917.887.917.857.837.62

Our approach with auto-tuner for 32-bit types (AI Engine Peak : 8 MACs/cycles)
Our approach with auto-tuner for 16-bit types (AI Engine Peak : 32 MACs/cycles)

Evaluation: CONV2D’s in CNN’s (128x2x16)

21

• REG-CONV2D (3x3, 5x5, 7x7)
• Vectorization along Output width and Reduction along Filter channels

• PW-CONV2D (1x1), SS-CONV2D (1x3, 3x1), FC-CONV2D (1x1)
• Vectorization along Output channels and Reduction along Filter channels

• DS-CONV2D (3x3) — Padded each row
• Vectorization along Output width and Reduction along Filter width

M
AC

s/
C

yc
le

0

5

10

15

20

25

30

35

40

REG-3x3 REG-5x5 REG-7x7 PW-1x1 SS-1x3 SS-3x1 DS-3x3 FC-1x1 Geo. Mean

22.53

15.77

19.69
22.3422.47

24.94
28.37

26.60

22.62

7.677.947.467.887.897.757.837.457.19

Our approach with auto-tuner for 32-bit types (AI Engine Peak: 8 MACs/cycles)
Our approach with auto-tuner for 16-bit types (AI Engine Peak: 32 MACs/cycles)

HALIDE CODE for REG CONV2D: O(x, y, k, n) += W(r, s, c, k) * I(x+r, y+s, c, n);

Non-trivial data-layout choices

22

• 16-bit REG-CONV2D (3x3)
• Vectorization along Output width and Reduction along Filter channels

• For the fused vector operation (W1xI1 + W2 x I2)

• Data for (I1, I2) should be in a single vector register for the operation

• I1(0) and I2(0) should be adjacent for shuffle network constraints

• (C/2)Y’X’(2) refers to first laying out an input block of two channels followed by width,
height, and remaining channels.

Summary and Questions

23

• Summary
• Manually writing vector code for high-performant tensor convolutions achieving

peak performance is extremely challenging!

• Automatic kernel generation can be the key!
• Proposed a convolution-specific IR for easier analysis and transformations

• Our approach (Vyasa) can work for any convolution variant regardless of its

variations and shapes/sizes.

• Achieved close to the peak performance for a variety of tensor convolutions

• Questions
• How about beyond tensor-style operations?

• E.g., fused convolutions (depth-wise + point-wise), non-rectilinear iteration spaces

(Symmetric GEMM)

• How about beyond the AI Engine?

• E.g., other accelerators like IBM Rapid, MIT Eyeriss, NVDLA…

Overview of today’s talk

24

1. Introduction & Background

2. Vyasa: A High-performance Vectorizing Compiler for Tensor Operations onto Xilinx AI
Engine (2D SIMD unit)

• Fixed hardware + Allow different kernel possibilities

3. PolyEDDO: A Polyhedral-based Compiler for Explicit De-coupled Data
Orchestration (EDDO) architectures
• Allow various hardware choices + Allow different kernel possibilities

4. Conclusions
"Hardware Abstractions for targeting EDDO Architectures with the Polyhedral Model"

Angshuman Parashar, Prasanth Chatarasi, and Po-An Tsai,  
11th International Workshop on Polyhedral Compilation Techniques (IMPACT'21)

https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_6.pdf

ICDO vs EDDO Architectures

EDDO architectures attempt to minimize data movement costs

Buffer

× × × ×

L2

L1

Buffer

DRAML3

RegFile RegFile RegFile RegFile

× × × ×

RegFile RegFile RegFile RegFile

L2 CacheL2 L2 Cache

DRAML3

× × × ×

L1

Datapaths

L1$ L1$ L1$

× × × ×

L1$ L1$ L1$ L1$L1$

Implicit Coupled Data Orchestration (ICDO)

e.g., CPUs, GPUs

Explicit Decoupled Data Orchestration (EDDO)

e.g., IBM Rapid AI, NVIDIA Simba, NVDLA, Eyeriss, etc.

Addr Gen

Addr Gen

Distributo
r

Distributo
r CollectorAddr Gen

Datapaths

EDDO Architectures

26

Benefits

• Dedicated (and often statically

programmed) state machines
more efficient than general
cores

• Perfect “prefetching”

• Buffet storage idiom provides

fine-grain synchronization and
efficient storage, or scratchpads
+ Send/Recv synchronization

• Hardware mechanisms for reuse

Buffer

× × × ×

L2

L1

Datapaths

Buffer

DRAML3

RegFile RegFile RegFile RegFile

× × × ×

RegFile RegFile RegFile RegFile

Addr Gen

Addr Gen

Distributo
r

Distributo
r CollectorAddr Gen

Pellauer et. al., “Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration”, ASPLOS 2019

Explicit Decoupled Data Orchestration (EDDO)

e.g., IBM Rapid AI, NVIDIA Simba, NVDLA, Eyeriss, etc.

EDDO Architectures

27

Challenges

1. No single binary: Collection of distinct

binaries that program distributed state
machines working together to execute
algorithm

• E.g., CNN layer on EDDO arch ! ~250 distinct state

machines.

2. Reuse optimization is critical for efficiency

• E.g., CNN layer on EDDO arch ! 480,000 mappings, 11x

spread in energy efficiency, 1 optimal mapping

• Need an optimizer or mapper

3. Variety of EDDO architectures, constantly
evolving

• Need an abstraction that Mapper and Code Generator will

target

Buffer

× × × ×

L2

L1

Datapaths

Buffer

DRAML3

RegFile RegFile RegFile RegFile

× × × ×

RegFile RegFile RegFile RegFile

Addr Gen

Addr Gen

Distributo
r

Distributo
r CollectorAddr Gen

Mapper
(optimizer)

Code
Generator

Mapping
Workload Binaries

Explicit Decoupled Data Orchestration (EDDO)

e.g., IBM Rapid AI, NVIDIA Simba, NVDLA, Eyeriss, etc.

28

Overall Compilation Flow

Mapper *

(optimizer) PolyEDDO Code Generator

Mapping

Workload Configuration Binaries
Arch-specific
configuratio
n generator

Arch-
independent

decoupled
programs

Analytical
microarchitecture and

energy model †

Perf, Energy, Area
Data-movement
activity counts

EDDO Architecture
described using Hardware

Space-Time (HST)

*† Parashar et. al., “Timeloop: Timeloop: A Systematic Approach to DNN Accelerator Evaluation”, ISPASS 2019

† Wu et. al., “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs”, ICCAD 2019

29

Example1 — Symbolic Hardware Space-Time (SHST)

t1

s1

L1

L2

Buffer

× × × ×

L2

L1

MACCs

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1] :

 𝑠2 = 0 & 𝑡2 = 0 &

0 ≤ 𝑠1 < 4 & 0 ≤ 𝑡1 < 3

Single L2, 4 L1s, 3 time-steps

• In each step, the L2 delivers a tile of data to

each L1

• Across all these L1 time steps, the resident tile

in L2 does not change. In effect, time is
stagnant for L2

30

Example2 — Symbolic Hardware Space-Time (SHST)

Buffer

× × × ×

L2

L1

MACCs

Buffer

× × × ×
MACCs

DRAML3

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [𝑠3, 𝑡3] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]] :

 𝑠3 = 0 𝑡3 = 0

 0 ≤ 𝑠2 < 2 0 ≤ 𝑡2 < 2

 0 ≤ 𝑠1 < 4 0 ≤ 𝑡1 < 3

t1 t1

t1

s1

L1

L2

s2

t2

L3

s1 s1

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,1]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [2,1]]

31

Example3 — Partitioned Buffers

PHST
DRAM [𝑠3, 𝑡3]

BufA [𝑠2, 𝑡2]
BufB [𝑠2, 𝑡2]
BufZ [𝑠2, 𝑡2]

OperandA [2𝑠2 + 𝑠1, 𝑡2, 𝑡1]
OperandB [2𝑠2 + 𝑠1, 𝑡2, 𝑡1]

ΘHST(DRAM) = →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →ΘHST(BufA) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →ΘHST(BufB) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →ΘHST(BufZ) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]] →ΘHST(OperandA) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]] →ΘHST(OperandB) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]] →ΘHST(Result) = Result [2𝑠2 + 𝑠1, 𝑡2, 𝑡1]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [𝑠3, 𝑡3] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]]

H
ST

SHST

BufB

DRAM

BufA BufZ

× × × ×

BufBBufA BufZ

× × × ×

BufB

DRAM

BufA BufZ

× × × ×

BufBBufA BufZ

× × × ×

BufBL2

L1

MACCs

DRAML3

BufA BufZ

× × × ×
OperandA

OperandB

Result

BufBBufA BufZ

× × × ×
t1 t1

t1

s1

L1

L2

s2

t2

L3

s1 s1Workload mappings target SHST

t1

t2

t3

32

Example4 — Eyeriss-like accelerator

× × × ×

× × × ×

× × × ×

DRAM

DiagBuffer

DiagBroadcaster

ColSpatialReducer

ColBuffer

Ro
w

Br
oa

dc
as

te
rRowBuffer

OperandA

OperandB

Result

L
1

L
2

L
3

L
4

SHST: 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒4 [𝑠4, 𝑡4] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [𝑠3, 𝑡3] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]]

Workload mappings target SHST

See paper for full HST

Observe how different the architecture is
from CPUs and GPUs

33

PolyEDDO Code Generator

T-relation
generation

Decoupling

Reuse
Analysis

Schedule
creation

AST
generation

Workload
Architecture HST

Mapping

Tiling (T)-relations

Delta (∆)-relations

Data Transfer (X)-relations

∆ schedules

Decoupled ASTs

34

Mapping workloads (Tensor operations)
M

N

Tile

Tile

Project

Project

Project

Workload
Iteration

Space

t1 t1

t1

s1

L1

L2

s2

t2

L3

SHST

s1 s1

35

Mapping workloads (The Tiling-relation, T-relation)

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,1]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [2,1]]

t1 t1

t1

s1

L1

L2

s2

t2

L3
SHST

s1 s1

→ MatrixA[m,k] : …

 MatrixB[k,n] : …

 MatrixZ[m,n] : …

→ MatrixA[m,k] : …

 MatrixB[k,n] : …

 MatrixZ[m,n] : …

Set of Tensor
Coords

Set of Tensor
Coords

T-relation: Projection from SHST coordinate
to a set of tensor coordinates

• Tells you what tiles of data must be present at

that point in space-time to honor the mapping.

• Does not tell you how the data got there.

36

Decoupling — Breaking the hierarchy

Buf
BL2

L1

MACCs

DRAML3

Buf
A BufZ

× × × ×
OperandA

OperandB
Result

Buf
B

Buf
A BufZ

× × × ×

BufBL2

DRAML3

BufA BufZ BufBBufA BufZ

BufBL2

L1

BufA BufZ BufBBufA BufZ

L1

MACCs

× × × × × × × ×

M

N

t1 t1

t1

s1

L1

L2

s2

t2

L3
SHST

s1 s1

T-relations

PHST

HST Decouple

PHST
Tensor
coords

[DRAM[s3, t3] -> BufA[s2, t2]] -> W[k,
r] : …

[BufA[s2, t2] -> OperandA[s1, t1]] -> W[k,
r] : …

[MACC[s1, t1]] -> MulAcc[k, p, r] :
…

Data transfer relations

(X-relations)

37

REUSE ANALYSIS

t

ss

t

t

s

L1

L2

Local Temporal Reuse

38

REUSE ANALYSIS

t

ss

t

t

s

L1

L2

Fill from Peer

39

REUSE ANALYSIS

t

ss

t

t

s

L1

L2

Fill from parent

40

REUSE ANALYSIS

t

ss

t

t

s

L1

L2

Parent Multicast/

Spatial Reduction

41

OPTIMIZATION PROBLEM (FOR A SINGLE MAPPING!)

From Peer A From Peer B

From Parent

Local Reuse Options:

1. Enumerate all possibilities and find
optimum solution

2. Use a heuristic

3. Expose choices to mapping (and thereby
the mapspace)

42

POLYEDDO

T-relation
generation

Decoupling

Reuse
Analysis

Schedule
creation

AST
generation

Workload
Architecture HST

Mapping

Tiling (T)-relations

Delta (∆)-relations

Data Transfer (X)-relations

∆ schedules

Decoupled ASTs

Described in paper

43

EXAMPLE OUTPUT

• Present capability: build generated code
against an EDDO emulator (automatically
configured from the PHST)

Summary and Questions?

44

• Summary
• HST (Hardware Space-Time) – an abstraction for EDDO architectures represented

using the Polyhedral Model

• PolyEDDO (WIP) – an analysis and code-generation flow based on HST

• Research questions
• How do we think about mapping imperfectly-nested loops to generic EDDO

architectures?

• How do we capture sparsity extensions of the accelerators?

Acknowledgments

45

• Ph.D. Advisors:
• Vivek Sarkar (advisor), and Jun Shirako (co-advisor)

• Collaborators
• Albert Cohen, Martin Kong, Tushar Krishna, Hyoukjun Kwon, John Mellor-

Crummey, Karthik Murthy, Stephen Neuendorffer, Angshuman Parashar,
Micheal Pellauer, Kees Vissers, and others

• Other mentors
• Kesav Nori, Uday Bondhugula, Milind Chabbi, Shams Imam, Deepak

Majeti, Rishi Surendran, and others

• IBM Research, Habanero & Synergy Research Group Members

Backup

46

Why do we need accelerators?

47

1) DNN models have tight constraints on latency, throughput, and
energy consumption, esp. on edge devices

2) DNN models have trillions of computations
Need high throughput — Makes CPUs inefficient

3) DNN models involve heavy data movement
Need to reduce energy — Makes GPUs inefficient

Landscape of DNN Accelerators

48

