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Deep Learning (DL) Accelerators
• Emerged to address the demands of DL models training and inferences 
• A large array of processing elements to provide high performance

• Direct communication between PEs for energy efficiency 

• PE & PE requires ~3x less energy compared to PE & L2 
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Trend in Accelerators
• Monolithic (coarse-grained) accelerators have served the purpose of proving higher 

performance and energy efficiency for specific computations (e.g., GEMM, CONV2D) 

•  Challenges: 
• Often times, the “dataflow” is hard-wired in the accelerator 
• Inhibits exploring different mappings for emerging workload shapes


• Suffer from flexibility in supporting “little more” broader computations 
• E.g., supporting interleaving of computations (e.g., point-wise + Depth-wise)


• Current approach involves adding enhancements to the monolithic accelerators 
• E.g., adding another compute unit meant for the new computations.

• E.g., adding more SIMD units or Systolic arrays (e.g., TPU V1 vs TPU V2)

• Hard to manage going forward with evolving operators in DL space


• Another approach: “Programmable explicit-decoupled data orchestration accelerators” 
• Compute and memory operations are decoupled

• Data movement is explicit
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ICDO vs EDDO Architectures
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EDDO Architectures
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Benefits 
• Dedicated (and often statically 

programmed) state machines 
more efficient than general 
cores 
• Perfect “prefetching” 
• Buffet storage idiom provides 

fine-grain synchronization and 
efficient storage, or scratchpads 
+ Send/Recv synchronization 
• Hardware mechanisms for reuse
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Pellauer et. al., “Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration”, ASPLOS 2019

Explicit Decoupled Data Orchestration (EDDO) 
e.g., IBM Rapid AI, NVIDIA Simba, 

Xilinx AI Engine array etc. 



Challenges: EDDO Architectures
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Challenges 
1. No single binary: Collection of distinct 

binaries that program distributed state 
machines working together to execute 
algorithm 
• E.g., CNN layer on EDDO arch ! ~250 distinct state 

machines. 

2. Reuse optimization is critical for efficiency 
• E.g., CNN layer on EDDO arch ! 480,000 mappings, 11x 

spread in energy efficiency, 1 optimal mapping  
• Need an optimizer or mapper 

3. Variety of EDDO architectures, constantly 
evolving 
• Need an abstraction that Mapper and Code Generator will 

target 
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Today’s talk: PolyEDDO Overall Compilation Flow

Mapper * 
(optimizer) PolyEDDO Code Generator

Mapping

Workload Configuration Binaries
Arch-specific 
configuratio
n generator

Arch-
independent 
decoupled 
programs

Analytical 
microarchitecture and 

energy model †

Perf, Energy, Area
Data-movement 
activity counts

EDDO Architecture 
described using Hardware 

Space-Time (HST)

*† Parashar et. al., “Timeloop: Timeloop: A Systematic Approach to DNN Accelerator Evaluation”, ISPASS 2019  
† Wu et. al., “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs”, ICCAD 2019

"Hardware Abstractions for targeting EDDO Architectures with the Polyhedral Model"  
Angshuman Parashar, Prasanth Chatarasi, and Po-An Tsai,  

11th International Workshop on Polyhedral Compilation Techniques (IMPACT'21) 

https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_6.pdf
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Example1 — Symbolic Hardware Space-Time (SHST)
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𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1] : 

    𝑠2 = 0 & 𝑡2 = 0  &  
0 ≤ 𝑠1 < 4 & 0 ≤ 𝑡1 < 3

Single L2, 4 L1s, 3 time-steps 
• In each step, the L2 delivers a tile of data to 

each L1 
• Across all these L1 time steps, the resident tile 

in L2 does not change. In effect, time is 
stagnant for L2
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Example2 — Symbolic Hardware Space-Time (SHST)
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Example3 — Partitioned Buffers
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Example4 — Eyeriss-like accelerator
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SHST: 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒4 [𝑠4, 𝑡4] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [𝑠3, 𝑡3] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]]

Workload mappings target SHST

See paper for full HST

Observe how different the architecture is 
from CPUs and GPUs
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PolyEDDO Code Generator
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Mapping workloads (Tensor operations)
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Mapping workloads (The Tiling-relation, T-relation)

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,1]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [2,1]]
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→ MatrixA[m,k] : …  
     MatrixB[k,n] : … 
     MatrixZ[m,n] : …

→ MatrixA[m,k] : …  
     MatrixB[k,n] : … 
     MatrixZ[m,n] : …

Set of Tensor 
Coords

Set of Tensor 
Coords

T-relation: Projection from SHST coordinate 
to a set of tensor coordinates 
• Tells you what tiles of data must be present at 

that point in space-time to honor the mapping. 
• Does not tell you how the data got there. 
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Decoupling — Breaking the hierarchy
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PHST

HST Decouple

PHST
Tensor 
coords

[DRAM[s3, t3] -> BufA[s2, t2]] -> W[k, 
r] : …

[BufA[s2, t2] -> OperandA[s1, t1]] -> W[k, 
r] : …

[MACC[s1, t1]] -> MulAcc[k, p, r] : 
…

Data transfer relations 
(X-relations)
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REUSE ANALYSIS
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REUSE ANALYSIS
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REUSE ANALYSIS
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REUSE ANALYSIS
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OPTIMIZATION PROBLEM (FOR A SINGLE MAPPING!)

From Peer A From Peer B

From Parent

Local Reuse Options: 

1. Enumerate all possibilities and find 
optimum solution 

2. Use a heuristic 

3. Expose choices to mapping (and thereby 
the mapspace)
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POLYEDDO

T-relation 
generation

Decoupling

Reuse 
Analysis

Schedule 
creation

AST 
generation

Workload
Architecture HST

Mapping

Tiling (T)-relations

Delta (∆)-relations

Data Transfer (X)-relations

∆ schedules

Decoupled ASTs

Described in paper
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EXAMPLE OUTPUT

• Present capability: build generated code 
against an EDDO emulator (automatically 
configured from the PHST)



Summary and Questions?
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• Summary 
• HST (Hardware Space-Time) – an abstraction for EDDO architectures represented 

using the Polyhedral Model

• PolyEDDO (WIP) – an analysis and code-generation flow based on HST

• Research questions 
• How do we think about mapping imperfectly-nested loops to generic EDDO 

architectures?

• How do we capture sparsity extensions of the accelerators?
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Why do we need accelerators?
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1) DNN models have tight constraints on latency, throughput, and 
energy consumption, esp. on edge devices

2) DNN models have trillions of computations
Need high throughput — Makes CPUs inefficient

3) DNN models involve heavy data movement
Need to reduce energy — Makes GPUs inefficient



Landscape of DNN Accelerators
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