
Automatic High-Performance Kernel Generation for
EDDO-Style Accelerators*

Prasanth Chatarasi
Research Staff Member @ AI Hardware Group,

IBM T.J. Watson Research Center,

YorkTown Heights, NY, USA

https://www.research.ibm.com/artificial-intelligence/hardware/

prasanth@ibm.com

SIAM Conference on Parallel Processing for Scientific Computing (PP22) , Feb 26th, 2022

*Work done during PhD studies in Habanero Research Group

at Georgia Institute of Technology

https://www.research.ibm.com/artificial-intelligence/hardware/
mailto:prasanth@ibm.com

Deep Learning (DL) Accelerators
• Emerged to address the demands of DL models training and inferences
• A large array of processing elements to provide high performance

• Direct communication between PEs for energy efficiency

• PE & PE requires ~3x less energy compared to PE & L2

2

PE

Shared Buffer (L2 Scratch Pad)

Network-on-Chip (NoC)

L1 Scratch Pad

ALU (MAC Unit)

To/From DRAM

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

PE
L1 Scratch Pad

ALU (MAC Unit)

DRAM unit

Abstract template
Eyeriss, MIT

TPU, Google xDNN, Xilinx RAPID, IBM

DLA, NVIDIA AI Engine, Xilinx
(Versal)

Trend in Accelerators
• Monolithic (coarse-grained) accelerators have served the purpose of proving higher

performance and energy efficiency for specific computations (e.g., GEMM, CONV2D)

• Challenges:
• Often times, the “dataflow” is hard-wired in the accelerator
• Inhibits exploring different mappings for emerging workload shapes

• Suffer from flexibility in supporting “little more” broader computations
• E.g., supporting interleaving of computations (e.g., point-wise + Depth-wise)

• Current approach involves adding enhancements to the monolithic accelerators
• E.g., adding another compute unit meant for the new computations.

• E.g., adding more SIMD units or Systolic arrays (e.g., TPU V1 vs TPU V2)

• Hard to manage going forward with evolving operators in DL space

• Another approach: “Programmable explicit-decoupled data orchestration accelerators”
• Compute and memory operations are decoupled

• Data movement is explicit

3

ICDO vs EDDO Architectures

Buffer

× × × ×

L2

L1

Buffer

DRAML3

RegFile RegFile RegFile RegFile

× × × ×

RegFile RegFile RegFile RegFile

L2 CacheL2 L2 Cache

DRAML3

× × × ×

L1

Datapaths

L1$ L1$ L1$

× × × ×

L1$ L1$ L1$ L1$L1$

Implicit Coupled Data Orchestration (ICDO)
e.g., CPUs, GPUs

Explicit Decoupled Data Orchestration (EDDO)
e.g., IBM Rapid AI, NVIDIA Simba,

Xilinx AI Engine array etc.
Addr Gen

Addr Gen

Distributo
r

Distributo
r CollectorAddr Gen

Datapaths

EDDO Architectures

5

Benefits
• Dedicated (and often statically

programmed) state machines
more efficient than general
cores
• Perfect “prefetching”
• Buffet storage idiom provides

fine-grain synchronization and
efficient storage, or scratchpads
+ Send/Recv synchronization
• Hardware mechanisms for reuse

Buffer

× × × ×

L2

L1

Datapaths

Buffer

DRAML3

RegFile RegFile RegFile RegFile

× × × ×

RegFile RegFile RegFile RegFile

Addr Gen

Addr Gen

Distributo
r

Distributo
r CollectorAddr Gen

Pellauer et. al., “Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration”, ASPLOS 2019

Explicit Decoupled Data Orchestration (EDDO)
e.g., IBM Rapid AI, NVIDIA Simba,

Xilinx AI Engine array etc.

Challenges: EDDO Architectures

6

Challenges
1. No single binary: Collection of distinct

binaries that program distributed state
machines working together to execute
algorithm
• E.g., CNN layer on EDDO arch ! ~250 distinct state

machines.

2. Reuse optimization is critical for efficiency
• E.g., CNN layer on EDDO arch ! 480,000 mappings, 11x

spread in energy efficiency, 1 optimal mapping
• Need an optimizer or mapper

3. Variety of EDDO architectures, constantly
evolving
• Need an abstraction that Mapper and Code Generator will

target

Buffer

× × × ×

L2

L1

Datapaths

Buffer

DRAML3

RegFile RegFile RegFile RegFile

× × × ×

RegFile RegFile RegFile RegFile

Addr Gen

Addr Gen

Distributo
r

Distributo
r CollectorAddr Gen

Mapper
(optimizer)

Code
Generator

Mapping
Workload Binaries

Explicit Decoupled Data Orchestration (EDDO)
e.g., IBM Rapid AI, NVIDIA Simba,

Xilinx AI Engine array etc.

7

Today’s talk: PolyEDDO Overall Compilation Flow

Mapper *
(optimizer) PolyEDDO Code Generator

Mapping

Workload Configuration Binaries
Arch-specific
configuratio
n generator

Arch-
independent
decoupled
programs

Analytical
microarchitecture and

energy model †

Perf, Energy, Area
Data-movement
activity counts

EDDO Architecture
described using Hardware

Space-Time (HST)

*† Parashar et. al., “Timeloop: Timeloop: A Systematic Approach to DNN Accelerator Evaluation”, ISPASS 2019
† Wu et. al., “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs”, ICCAD 2019

"Hardware Abstractions for targeting EDDO Architectures with the Polyhedral Model"
Angshuman Parashar, Prasanth Chatarasi, and Po-An Tsai,  

11th International Workshop on Polyhedral Compilation Techniques (IMPACT'21)

https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_6.pdf

8

Example1 — Symbolic Hardware Space-Time (SHST)

t1

s1

L1

L2

Buffer

× × × ×

L2

L1

MACCs

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1] :

 𝑠2 = 0 & 𝑡2 = 0 &
0 ≤ 𝑠1 < 4 & 0 ≤ 𝑡1 < 3

Single L2, 4 L1s, 3 time-steps
• In each step, the L2 delivers a tile of data to

each L1
• Across all these L1 time steps, the resident tile

in L2 does not change. In effect, time is
stagnant for L2

9

Example2 — Symbolic Hardware Space-Time (SHST)

Buffer

× × × ×

L2

L1

MACCs

Buffer

× × × ×
MACCs

DRAML3

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [𝑠3, 𝑡3] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]] :

 𝑠3 = 0 𝑡3 = 0
 0 ≤ 𝑠2 < 2 0 ≤ 𝑡2 < 2
 0 ≤ 𝑠1 < 4 0 ≤ 𝑡1 < 3

t1 t1

t1

s1

L1

L2

s2

t2

L3

s1 s1

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,1]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [2,1]]

10

Example3 — Partitioned Buffers

PHST
DRAM [𝑠3, 𝑡3]

BufA [𝑠2, 𝑡2]
BufB [𝑠2, 𝑡2]
BufZ [𝑠2, 𝑡2]

OperandA [2𝑠2 + 𝑠1, 𝑡2, 𝑡1]
OperandB [2𝑠2 + 𝑠1, 𝑡2, 𝑡1]

ΘHST(DRAM) = →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →ΘHST(BufA) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →ΘHST(BufB) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →ΘHST(BufZ) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]] →ΘHST(OperandA) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]] →ΘHST(OperandB) =

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [0, 0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]] →ΘHST(Result) = Result [2𝑠2 + 𝑠1, 𝑡2, 𝑡1]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [𝑠3, 𝑡3] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]]

H
ST

SHST

BufB

DRAM

BufA BufZ

× × × ×

BufBBufA BufZ

× × × ×

BufB

DRAM

BufA BufZ

× × × ×

BufBBufA BufZ

× × × ×

BufBL2

L1

MACCs

DRAML3

BufA BufZ

× × × ×
OperandA

OperandB

Result

BufBBufA BufZ

× × × ×
t1 t1

t1

s1

L1

L2

s2

t2

L3

s1 s1Workload mappings target SHST

t1

t2

t3

11

Example4 — Eyeriss-like accelerator

× × × ×

× × × ×

× × × ×

DRAM

DiagBuffer

DiagBroadcaster

ColSpatialReducer

ColBuffer

Ro
w

Br
oa

dc
as

te
rRowBuffer

OperandA

OperandB

Result

L
1

L
2

L
3

L
4

SHST: 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒4 [𝑠4, 𝑡4] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3 [𝑠3, 𝑡3] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2 [𝑠2, 𝑡2] →𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [𝑠1, 𝑡1]]

Workload mappings target SHST

See paper for full HST

Observe how different the architecture is
from CPUs and GPUs

12

PolyEDDO Code Generator

T-relation
generation

Decoupling

Reuse
Analysis

Schedule
creation

AST
generation

Workload
Architecture HST

Mapping

Tiling (T)-relations

Delta (∆)-relations

Data Transfer (X)-relations

∆ schedules

Decoupled ASTs

13

Mapping workloads (Tensor operations)
M

N

Tile

Tile

Project

Project

Project

Workload
Iteration

Space

t1 t1

t1

s1

L1

L2

s2

t2

L3

SHST

s1 s1

14

Mapping workloads (The Tiling-relation, T-relation)

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,1]

𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒3[0,0] → [𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒2[1,0] → 𝑆𝑝𝑎𝑐𝑒𝑇𝑖𝑚𝑒1 [2,1]]

t1 t1

t1

s1

L1

L2

s2

t2

L3
SHST

s1 s1

→ MatrixA[m,k] : …
 MatrixB[k,n] : …
 MatrixZ[m,n] : …

→ MatrixA[m,k] : …
 MatrixB[k,n] : …
 MatrixZ[m,n] : …

Set of Tensor
Coords

Set of Tensor
Coords

T-relation: Projection from SHST coordinate
to a set of tensor coordinates
• Tells you what tiles of data must be present at

that point in space-time to honor the mapping.
• Does not tell you how the data got there.

15

Decoupling — Breaking the hierarchy

Buf
BL2

L1

MACCs

DRAML3

Buf
A BufZ

× × × ×
OperandA

OperandB
Result

Buf
B

Buf
A BufZ

× × × ×

BufBL2

DRAML3

BufA BufZ BufBBufA BufZ

BufBL2

L1

BufA BufZ BufBBufA BufZ

L1

MACCs

× × × × × × × ×

M

N

t1 t1

t1

s1

L1

L2

s2

t2

L3
SHST

s1 s1

T-relations

PHST

HST Decouple

PHST
Tensor
coords

[DRAM[s3, t3] -> BufA[s2, t2]] -> W[k,
r] : …

[BufA[s2, t2] -> OperandA[s1, t1]] -> W[k,
r] : …

[MACC[s1, t1]] -> MulAcc[k, p, r] :
…

Data transfer relations
(X-relations)

16

REUSE ANALYSIS

t

ss

t

t

s

L1

L2

Local Temporal Reuse

17

REUSE ANALYSIS

t

ss

t

t

s

L1

L2

Fill from Peer

18

REUSE ANALYSIS

t

ss

t

t

s

L1

L2

Fill from parent

19

REUSE ANALYSIS

t

ss

t

t

s

L1

L2

Parent Multicast/
Spatial Reduction

20

OPTIMIZATION PROBLEM (FOR A SINGLE MAPPING!)

From Peer A From Peer B

From Parent

Local Reuse Options:

1. Enumerate all possibilities and find
optimum solution

2. Use a heuristic

3. Expose choices to mapping (and thereby
the mapspace)

21

POLYEDDO

T-relation
generation

Decoupling

Reuse
Analysis

Schedule
creation

AST
generation

Workload
Architecture HST

Mapping

Tiling (T)-relations

Delta (∆)-relations

Data Transfer (X)-relations

∆ schedules

Decoupled ASTs

Described in paper

22

EXAMPLE OUTPUT

• Present capability: build generated code
against an EDDO emulator (automatically
configured from the PHST)

Summary and Questions?

23

• Summary
• HST (Hardware Space-Time) – an abstraction for EDDO architectures represented

using the Polyhedral Model

• PolyEDDO (WIP) – an analysis and code-generation flow based on HST

• Research questions
• How do we think about mapping imperfectly-nested loops to generic EDDO

architectures?

• How do we capture sparsity extensions of the accelerators?

Acknowledgments

24

• Angshuman Parashar, NVIDIA
• Po-An Tsai, NVIDIA

Backup

25

Why do we need accelerators?

26

1) DNN models have tight constraints on latency, throughput, and
energy consumption, esp. on edge devices

2) DNN models have trillions of computations
Need high throughput — Makes CPUs inefficient

3) DNN models involve heavy data movement
Need to reduce energy — Makes GPUs inefficient

Landscape of DNN Accelerators

27

