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Abstract. Despite the fact that compiler technologies for automatic
vectorization have been under development for over four decades, there
are still considerable gaps in the capabilities of modern compilers to per-
form automatic vectorization for SIMD units. One such gap can be found
in the handling of loops with dependence cycles that involve memory-
based anti (write-after-read) and output (write-after-write) dependences.
Past approaches, such as variable renaming and variable expansion, break
such dependence cycles by either eliminating or repositioning the prob-
lematic memory-based dependences. However, the past work suffers from
three key limitations: 1) Lack of a unified framework that synergisti-
cally integrates multiple storage transformations, 2) Lack of support for
bounding the additional space required to break memory-based depen-
dences, and 3) Lack of support for integrating these storage transfor-
mations with other code transformations (e.g., statement reordering) to
enable vectorization.
In this paper, we address the three limitations above by integrating both
Source Variable Renaming (SoVR) and Sink Variable Renaming (SiVR)
transformations into a unified formulation, and by formalizing the “cycle-
breaking” problem as a minimum weighted set cover optimization prob-
lem. To the best of our knowledge, our work is the first to formalize an
optimal solution for cycle breaking that simultaneously considers both
SoVR and SiVR transformations, thereby enhancing vectorization and
reducing storage expansion relative to performing the transformations
independently. We implemented our approach in PPCG, a state-of-the-
art optimization framework for loop transformations, and evaluated it on
eleven kernels from the TSVC benchmark suite. Our experimental results
show a geometric mean performance improvement of 4.61× on an Intel
Xeon Phi (KNL) machine relative to the optimized performance obtained
by Intel’s ICC v17.0 product compiler. Further, our results demonstrate
a geometric mean performance improvement of 1.08× and 1.14× on the
Intel Xeon Phi (KNL) and Nvidia Tesla V100 (Volta) platforms relative
to past work that only performs the SiVR transformation [5], and of
1.57× and 1.22× on both platforms relative to past work on using both
SiVR and SoVR transformations [8].

Keywords: Vectorization · Renaming · Storage transformations · Poly-
hedral compilers · Intel KNL · Nvidia Volta · TSVC Suite · SIMD.
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1 Introduction

There is a strong resurgence of interest in vector processing due to the significant
energy efficiency benefits of using SIMD parallelism within individual CPU cores
as well as in streaming multiprocessors in GPUs. These benefits increase with
widening SIMD vectors, reaching vector register lengths of 512 bits in the Intel
Xeon Phi Knights Landing (KNL) processor, Intel Xeon Skylake processor and
2048 bits in the scalable vector extension of the Armv8 architecture [18]. Further,
there is a widespread expectation that compilers will continue to play a central
role in handling the complexities of dependence analysis, code transformation
and code generation necessary for vectorization for CPUs. Even in cases where
the programmer identifies a loop as being vectorizable, the compiler still plays
a major role in transforming the code to use SIMD instructions. This is in
contrast with multicore and distributed-memory parallelism (and even with GPU
parallelism in many cases), where it is generally accepted that programmers
manually perform the code transformations necessary to expose parallelism, with
some assistance from the runtime system but little or no help from compilers. It
is therefore important to continue advancing the state of the art of vectorizing
compiler technologies, so as to address the growing needs for enabling modern
applications to use the full capability of SIMD units.

This paper focuses on advancing the state of the art with respect to handling
memory-based anti (write-after-read) or output (write-after-write) dependences
in vectorizing compilers. These dependences can theoretically be eliminated by
allocating new storage to accommodate the value of the first write operation
thereby ensuring that the following write operation need not wait for the first
write to complete. However, current state-of-the-art vectorizing compilers only
perform such storage transformations in limited cases, and often fail to vectorize
loops containing cycles of dependences that include memory-based dependences.
This is despite a vast body of past research on storage transformations, such as
variable renaming [15, 13, 7, 14] and variable expansion [10], which have shown
how removing storage-related dependences can make it possible to “break” de-
pendence cycles.

We believe that the limited use of such techniques in modern compilers is
due to three key limitations that currently inhibit their practical usage:

1. Lack of a unified framework that synergistically integrates multiple storage
transformations,

2. Lack of support for bounding the additional space required to break memory-
based dependences, and

3. Lack of support for integrating these storage transformations with other code
transformations (e.g., statement reordering) to enable vectorization.

The goal of this paper is to enhance the current state-of-the-art in vector-
izing compilers to enable more loops to be vectorized via systematic storage
transformations (variable renamings) that remove selected memory-based de-
pendences to break their containing cycles, while optionally using a bounded
amount of additional space. We view our tool, called PolySIMD, as an exten-
sion to vectorization technologies that can be invoked when a state-of-the-art
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vectorizer fails to vectorize a loop. Thus, we do not focus on replicating all
state-of-the-art vectorization capabilities in PolySIMD. For example, we focus
on enabling vectorization of innermost loops in PolySIMD, though many state-
of-the-art compilers support outer loop vectorization as well (and we believe that
our contributions can also be applied to outer loop vectorization). By default,
our tool takes sequential code as input, and focuses on identifying the best use of
variable renamings to maximize opportunities for vectorization. An input loop
can optionally be annotated with a pragma that specifies a bound (spacelimit)
on the maximum amount of extra storage that can be allocated to break de-
pendences. As discussed later, the two main variable renaming transformations
that we employ in our approach are Source Variable Renaming (SoVR) and Sink
Variable Renaming (SiVR).

The main technical contributions of this paper are as follows:

– We formalize the problem of identifying an optimized set of SoVR and SiVR
variable renaming transformations to break cycles of dependences as a min-
imum weighted set cover optimization problem, and demonstrate that it is
practical to use ILP formulations to find optimal solutions to this problem.
If the user provides an optional spacelimit parameter, our formalization en-
sures that the additional storage introduced by our transformations remains
within the user-provided bounds.

– We created a new tool, PolySIMD, to implement our approach by selecting
and performing an optimal set of SoVR and SiVR transformations, along
with supporting statement reordering transformations. Given an input se-
quential loop, PolySIMD either generates transformed sequential CPU code
that can be input into a vectorizing compiler like ICC or generates GPU
code (CUDA kernels) that can be processed by a GPU compiler like NVCC.
PolySIMD is implemented as a extension to the PPCG framework [20, 1], so
as to leverage PPCG’s dependence analysis and code generation capabilities.

– We evaluated our approach on eleven kernels from the TSVC benchmark
suite [16], and obtained a geometric-mean performance improvement of 4.61×
on an Intel Xeon Phi (KNL) machine relative to the optimized performance
obtained by Intel’s ICC v17.0 product compiler.

– We also compared our approach with the two most closely related algorithms
from past work, one by Calland et al. [5] that only performed SiVR trans-
formations, and the other by Chu et al. [8]. that proposed a (not necessarily
optimal) heuristic to combine SiVR and SoVR transformations.

Relative to Calland et al’s approach, our approach delivered an overall
geometric-mean performance improvement of 1.08× and 1.14× on the Intel
KNL and Nvidia Volta platforms respectively, though our approach selected
exactly the same (SiVR-only) transformations for six of the eleven bench-
marks. Relative to Chu et al’s approach, our approach delivered an overall
geometric-mean performance improvement of 1.57× and 1.22× on the Intel
KNL and Nvidia Volta platforms respectively.
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Original program

having cycles

Applying SoVR(s2, a[i+1])

on the original program

Applying SiVR(s1, a[i])

on the original program

for i = 1 to N {

a[i] = b[i]+c[i];//s1

a[i+1] = a[i -1]+2*a[i+1];//s2

}

for i = 1 to N {

a[i] = b[i]+c[i];//s1

float k = a[i+1];//s21

a[i+1] = a[i -1]+2*k;//s2

}

float a_temp[N];

for i = 1 to N {

a_temp[i] = b[i]+c[i];//s11

a[i] = a_temp[i];//s1

a[i+1] = (i > 1) ? \ //s2

(a_temp[i-1] : a[i-1]) +2*a[i+1]

}

Dependence graph

of the original program

Dependence graph

after applying SoVR(s2, a[i+1])

on the original program

Dependence graph

after applying SiVR(s1, a[i])

on the original program

Table 1. An example to illustrate SoVR and SiVR transformations.

2 Discussion on Variable Renaming Transformations

In this section, we discuss on two variable renaming transformations that are
considered in this paper, and they are Source variable renaming (SoVR) 3 in-
troduced by Kuck et al. in [15] and Sink variable renaming (SiVR) introduced
by Chu et al. in [7]. Furthermore, these two renaming transformations were for-
malized by Calland et al. in [5], and referred SoVR and SiVR as T1 and T2
transformations respectively.

2.1 Source Variable Renaming (SoVR)

Source variable renaming transformation is introduced to handle anti-dependences
in cycles of memory-based dependences, and the transformation is applied on a
read access of a statement to reposition an outgoing anti-dependence edge from
the read access [15]. Applying SoVR on a read access (say r) of a statement in-
troduces a new assignment statement that copies the value of r into a temporary
variable (say k), and then the original statement’s read access is replaced with k.
Since the transformation is renaming source (read access) of an anti-dependence,
we call this transformation as a source variable renaming transformation.

Example. Applying SoVR on the read access a[i+1] of the statement s2 in
the original program (shown in Table 1) introduces a new assignment statement
s21 copying the value of a[i+1] into a temporary variable k, and then the
statement s2 refers to k in-place of a[i+1]. As a result, the source of the anti-
dependence from the read access a[i+1] is repositioned to s21. This reposition
helps in breaking one of the cycles through s2, i.e., the cycle involving a flow-
dependence from a[i] of s1 to a[i-1] of s2, and an anti-dependence from
a[i+1] of s2 to a[i] of s1.

Usefulness. Since SoVR transformation is applied on a read access of a state-
ment, the transformation can modify only incoming flow- and outgoing anti-
dependences related to that read access. Hence, applying a SoVR transforma-
tion on a statement is useful in breaking cycles if the statement has an incoming

3SoVR was also referred as node splitting by Kuck et al. in [15].
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anti- or output-dependences and an outgoing anti-dependence [5]. Also, SoVR
transformation can be useful if the statement’s incoming flow-dependence and
outgoing anti-dependence are on different accesses.

Space requirements & Additional memory traffic. The temporary variable
introduced as part of a SoVR transformation is private to a loop carrying an
anti-dependence that we are interested in repositioning. Hence, SoVR requires
an additional space equivalent to the length of vector registers (i.e., VLEN) of
target hardware. Furthermore, the transformation additionally introduces only
one scalar load and one scalar store per every iteration of the target loop.

2.2 Sink Variable Renaming (SiVR)

Sink variable renaming transformation is introduced to handle both anti- and
output-dependences in cycles of memory-based dependences [7]. The transfor-
mation is applied on a write access of a statement to reposition an outgoing
flow-dependence from the write access and also an outgoing anti-dependence
from the statement. Applying SiVR on a write access (say w) of a statement
s introduces a new assignment statement that evaluates the right hand side of
the statement into a temporary array (say temp), and then any references to
the value of w are replaced by accessing the temp. Since SiVR transformation
is applied on a write access of a statement, the transformation can modify only
incoming anti- or output-dependences related to that write access. As a result,
applying SiVR transformation is useful in breaking cycles if the statement has
either an incoming anti- or output-dependences and either an outgoing flow- or
anti-dependences [5]. Since the transformation is renaming the sink (the write
access) of an incoming anti- or output-dependence, this transformation is called
as sink variable renaming transformation [7].

Example. Applying SiVR on the write access a[i] of the statement s1 in
the original program (shown in Table 1) introduces a new assignment statement
s11 that evaluates the rhs of s1 into a temporary array a temp, and then the
transformation replaces the references to a[i] (such as a[i-1]) with the a temp.
As a result, the source of the flow-dependence from the write access a[i] is
repositioned to s11. This repositioning helps in breaking all of the cycles present
in the original program including the one that is not broken by the previous
SoVR transformation, i.e., the cycle involving a flow-dependence from a[i] of
s1 to a[i-1] of s2, and an output-dependence from a[i+1] of s2 to a[i] of s1.

Space requirements The temporary array introduced as part of a SiVR trans-
formation is not private to a loop unlike SoVR transformation, because references
to the newly allocated storage can be across iterations. Hence, SiVR requires an
additional space equivalent to the number of iterations of a loop. However, the
additional storage can be reduced by strip mining the loop, and vectorizing only
the strip [21]; whose space requirement is now proportional to the strip size, and
the strip can be as minimal as vector length.

Additional memory traffic. SiVR transformation introduces pointer-based
loads and stores, unlike the SoVR transformation which introduces only scalar
loads and stores. The new assignment statement as part of a SiVR transforma-
tion introduces one additional pointer-based store and one pointer-based load
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per one iteration of the loop. Along with a new assignment statement, each ref-
erence to the newly allocated storage introduces one additional pointer-based
load, leading to overall (1+#references) of pointer-based loads per one iteration
of the loop. In this work, we focus on applying renaming transformations for
vectorizing only inner-most loops, and this focus helps in conservatively count-
ing the references to the newly allocated storage by traversing the loop body
and ignoring conditionals.

2.3 Synergy between SoVR and SiVR

In general, SoVR transformation is neater in code generation and performs more
efficiently than SiVR since the SoVR transformation introduces scalar loads
and stores. But, SoVR transformation has limited applicability (i.e., handling
only anti-dependences) in breaking cycles compared to SiVR, which has broader
applicability through breaking output-dependences. Table 2 shows a comparison
between SoVR and SiVR transformations related to space requirements and
additional stores and loads.

SoVR SiVR

Storage #Additional space Vector length Loop length

Additional
loads &
stores

#scalar loads 1 0*
#scalar stores 1 0*
#pointer-based loads 0 1+#references
#pointer-based stores 0 1

Table 2. A comparison between SoVR and SiVR transformations related to the space
requirements and additional stores, loads introduced by these transformations in one
iteration of the target loop. * – Additional scalar loads/stores for SiVR transformation
may go negative in case of renaming scalars.

3 Motivating Example

To motivate the need of a unified framework that synergistically integrates mul-
tiple variable renaming transformations, we consider a running example (shown
in Figure 1) from [5] whose dependence graph consists of three cycles (i.e., s1-s3-
s2-s4-s1, s1-s3-s4-s1, and s1-s2-s4-s1) which prohibit vectorization. Past work by
Calland et al. [5] uses only SiVR transformations to eliminate all of the above
three cycles by applying SiVR transformations on the statements s2 and s3. But,
these transformations require an additional space close to 2 times the number
of iterations of the loop-i, i.e., a total of (2× T ), and also introduce additional
2 pointer-based stores and 4 pointer-based loads per one iteration of the loop.

However, instead of applying SiVR transformation on the statement s2 to
break the cycle (c3), SoVR transformation can be applied on the s1 to break the
same cycle (c3). This results in lesser additional space (T + V LEN), and also
introduces lesser additional 1 pointer-based store and 2 pointer-based loads per
one iteration of the loop. Our approach identifies such optimal transformations
from a set of valid SoVR and SiVR transformations by formalizing the “cycle-
breaking” problem as a minimum weighted set cover optimization problem with
a goal of reducing overhead arising from additional loads and stores introduced
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Original program from [5]

having cycles

Past approach by Calland et al. [5]

on the original program

Our approach

on the original program

float a[N], b[N], c[N];

for i = 4 to T {

a[i+5]=c[i-3]+b[2i+2];//s1

b[2i] = a[i-1] + 1;//s2

a[i] = c[i+5] - 1;//s3

c[i] = b[2i-4]; //s4

}

float a[N], b[N], c[N];

float a_temp[T], b_temp[T];

for i = 4 to T {

a[i+5] = c[i-3]+b[2i+2]; //s1

b_temp[i] = (i >= 5) ? \

a_temp[i-1]:a[i -1]+1; //s21

b[2i] = b_temp[i]; //s2

a_temp[i]=c[i+5]-1;//s31

a[i] = a_temp[i]; //s3

c[i] = (i >= 6) ? \

b_temp[i-2]:b[2i-4];//s4

}

float a[N], b[N], c[N];

float a_temp[T];

for i = 4 to T {

float k = b[2i+2]; //s11

a[i+5] = c[i-3] + k;//s1

b[2i] = (i >= 5) ? \

a_temp[i-1]:a[i -1]+1; //s2

a_temp[i]=c[i+5]-1;//s31

a[i] = a_temp[i]; //s3

c[i] = b[2i-4]; //s4

}

Dependence graph

of the original program

Dependence graph

after applying the past

approach by Calland et al. [5]

on the original program

SiVR(s2, b[2i]), SiVR(s3, a[i])

Dependence graph

after applying our approach

on the original program

SoVR(s1, b[2i+2]), SiVR(s3, a[i])

Fig. 1. A running example from [5] whose dependence graph consists of three cycles
c1/c2/c3: s1-s3-s2-s4-s1/s1-s3-s4-s1/s1-s2-s4-s1 which prohibit vectorization. The table
also lists dependence graphs and transformed codes after applying past approach [5]
and our integrated approach on the original program.

by these transformations. The speedup’s after applying our approach over the
original program is 5.06× and 4.02× compared to the original program and the
transformed program after applying the Calland et al. approach [5] respectively
on the Intel Knights Landing processor (More details about the architectures
and compiler options can be found in Table 4).

4 Our Unified Approach to Variable Renaming

In this section, we introduce our approach that synergistically integrates SoVR
and SiVR transformations into a unified formulation to break cycles of depen-
dences involving memory-based dependences, and the approach is implemented
in a tool called PolySIMD.

The overall approach is summarized in Figure 2, which is implemented as an
extension to the PPCG framework [20] (a state-of-the-art optimization frame-
work for loop transformations), and consists of the following components: 1) De-
pendence cycles finder (Extracting flow-, anti-, and output-dependences on a
target loop, then constructing a dependence graph, and then finding cycles in
the graph using the Johnson’s algorithm [12]), 2) Bipartite graph constructor
(Building a bipartite mapping from a union over useful SoVR and SiVR trans-
formations to the breakable cycles, in such a way that there is an edge between
them if the transformation can break the cycle), 3) Solver (Reducing the problem



8 P. Chatarasi et al.

of breaking cycles as a weighted set covering optimization problem and finding
an optimal solution using the ILP solver of ISL framework [19]), 4) Transformer
(Applying SoVR and SiVR transformation from the optimal solution to break
cycles).

4.1 Dependence Cycles Finder

Fig. 2. Workflow of PolySIMD imple-
mented as an extension to the PPCG [20].

This component takes the polyhedral
intermediate representation (also re-
ferred to as SCoP) extracted from a
target loop as an input. Then, the
loop-carried and loop-independent
flow-, anti-, and output-dependences
(including both data and control de-
pendences) of the target loop are com-
puted using the PPCG dependence
analyzer. Afterwards, these depen-
dences are represented as a directed
graph, where a node denotes a state-
ment, and an edge denotes a depen-
dence between two statements. Also,
each edge of a directed graph is anno-
tated with a dependence type: flow-, anti-, or output-. Now, PolySIMD com-
putes all strongly connected components (SCC’s) of the directed graph using
the Tarjan’s algorithm [11]. Then, all elementary cycles 4 for every SCC of the
dependence graph are identified using the Johnson’s algorithm [12], an efficient
algorithm to enumerate all elementary cycles of a directed graph. The worst case
time complexity of the algorithm is O((n+e)(c+1)) where n is the number of ver-
tices, e is the number of edges and c is the number of distinct elementary cycles
in a directed graph. For example, applying Johnson’s algorithm on a dependence
graph of the running example (shown in Figure 1 and has only one SCC) results
in three elementary cycles c1/c2/c3: s1-s3-s2-s4-s1/s1-s3-s4-s1/s1-s2-s4-s1 on the
loop-i.

Note that SoVR and SiVR transformation cannot break a cycle if the cycle
is either a pure flow- or pure output-dependence cycle [5]. Since our approach
considers only SoVR and SiVR into the formulation, if PolySIMD encounters
any dependence cycle involving pure flow- or pure output-dependences in a SCC,
then the tool ignores the SCC and continues with the rest of SCC’s. If each SCC
have either a pure flow- or pure output-dependence cycle, then PolySIMD will
skip rest of steps in our approach, otherwise the tool continues with next steps.
Since the three cycles c1, c2, and c3 of the running example are neither pure-flow
nor pure-output dependence cycles, our approach proceeds to the next step.

4An elementary cycle of a directed graph is a path in which no vertex appears twice
except the first and last vertices. Since elementary cycles form a basis for enumerating
all cycles in a directed graph, breaking all of them results in an acyclic graph.
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4.2 Bipartite Graph Constructor

Transformations (T) Cycles (C)
t1 = SoVR(s1, b[2i+2]) c3

t2 = SiVR(s2, b[2i]) c3
t3 = SiVR(s3, a[i]) c1, c2

t4 = SoVR(s3, c[i+5]) c2
t5 = SiVR(s4, c[i]) c2

Table 3. Bipartite graph constructed
on the dependence graph of the original
program in Figure 1.

This component constructs a bipartite
graph between a union of useful SoVR
and SiVR transformations (see Section 2
for usefulness criteria) and breakable cy-
cles of the dependence graph such that
there is an edge between them if applying
the transformation can break the cycle. As
from the usefulness criteria, Table 3 shows
a tabular version of the bipartite graph
constructed for the running example.

4.3 Solver

After constructing the bipartite graph, the problem of finding an optimal set
of transformations for cycle breaking is reduced to a minimum weighted set
cover optimization problem (C, T,W ) where C refers to a collection of cycles,
T refers to a set of useful SoVR and SiVR transformations, and W refers to
a set of weights for each transformation. The goal of the optimization problem
is to identify the minimum weighted sub-collection of T whose union covers all
cycles in C, and the optimization problem is known to be NP-hard. Hence, we
formulate the minimum weighted set covering problem as the following integer
linear programming (ILP) in our tool-chain.

Variables:

– A variable ti for each transformation of T

ti ∈ {0, 1}, ∀ ti ∈ T

where ti = 1 indicates that the transformation ti should be applied on the
original program, otherwise it should be ignored.

– A weight parameter wi for each transformation ti to indicate an additional
execution overhead (ignoring cache effects), and is measured using the ad-
ditional loads and stores introduced by the transformation per one iteration
of the target loop (See Table 2 for more details).

– A latencyratio parameter to indicate the ratio of access times of main mem-
ory to registers, and this parameter is used in converting weight parameters
of SiVR transformations (introduced pointer-based loads/stores) into same
units as of weight parameters of SoVR transformations (introduces scalar-
based loads/stores).

Acyclicity constraint: The acyclic constraint on the dependence graph is mod-
eled into a condition that each cycle of C should be covered by at-least one
transformation of T .

∀ cj in C,

( ∑
∀ ti in T

such that ti can break cj

ti

)
≥ 1
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Objective function: Our approach targets at minimizing additional overhead
introduced by the optimal set of transformations.

Minimize

( ∑
∀ ti in T

wi × ti

)

The ILP formulation for the example is as follows (Assuming latencyratio as 50).

T = {t1, t2, t3, t4, t5}, C = {c1, c2, c3}, ti ∈ {0, 1}, ∀ ti ∈ T,

w1 = w4 = 2, w2 = w3 = w5 = 50× 3 = 150,

t3 ≥ 1, t3 + t4 + t5 ≥ 1, t1 + t2 ≥ 1,

Minimize

(
2× (t1 + t4) + 150× (t2 + t3 + t5)

)
The optimal solution obtained for the above formulation is (t1=1, t2=0,

t3=1, t4=0, and t5=0), i.e., applying SoVR on s2 and SiVR on s3 can break
all cycles present in the running example with minimal additional overhead in-
troduced. Note that the above solution is different to the solution (t2 = 1, t3
= 1) from the Calland et al’s approach in [5] since our approach considers both
SoVR and SiVR transformations into the formulation, unlike the Calland et al’s
approach which includes only SiVR transformations.

Heuristics. There can be simple heuristics such as applying SoVR transfor-
mation in the beginning to break as many cycles it can and followed by apply-
ing SiVR transformation to break rest of cycles, which can lead to the similar
performance improvements compared to our approach. The solution from such
heuristics may include redundant SoVR transformations, which can be observed
on the running example. Applying transformation t4 (SoVR) on the running
example (ahead of SiVR transformations) to break the cycle c2 is redundant be-
cause the transformation t3 (SiVR) will eventually break the cycle c2 and also
can break cycle c1 that cannot be broken by any SoVR transformation.

There can exists other heuristics or greedy algorithms to the minimum weighted
set cover optimization problem. But, we believe that an ILP formulation formal-
izes the optimization problem without being tied to specific heuristics, which in
turn reduces performance anomalies that can occur in optimization heuristics;
Also, the compile-times for the results in this experimental evaluation are less
than half a second (see Table 5 for more details). We also believe that our frame-
work can be easily extended to include other heuristics or greedy algorithms to
the optimization problem.

4.4 Transformer

This component applies the optimal set of transformations obtained from the
solver onto the intermediate polyhedral representation of the target loop. It is
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also mentioned in [5] that the order of applying SoVR and SiVR transformations
doesn’t have any effect on the final program. Hence, PolySIMD first applies SoVR
transformations from the optimal solution, and then followed by SiVR transfor-
mations from rest of the optimal solution. The generation of new assignment
statements, modifying schedules of statements, and updating the references as
part of the code transformations are implemented using the dependence analyzer
and schedule trees of the PPCG framework.

After applying all transformations from the optimal solution, PolySIMD feeds
the transformed intermediate polyhedral representation to the PPCG optimiza-
tion engine to perform statement reordering based on the topological sorting
of the transformed dependence graph. Note that all of the benchmarks in the
experimental evaluation required statement reordering transformation to be per-
formed without which the Intel’s ICC v17.0 product compiler couldn’t vectorize.
This demonstrates the necessity of coupling storage optimizations with the loop
optimization framework. Finally, PolySIMD leverages code generation capabili-
ties of the PPCG framework to generate transformed sequential CPU code that
can be input into a vectorizing compiler like ICC or generates GPU code (CUDA
kernels) that can be processed by a GPU compiler like NVCC.

4.5 Bounding Additional Space

We believe that one of the major key limitations in the unavailability of variable
renaming techniques (especially on arrays) in modern compilers is due to the
lack of support for bounding the additional space required to break memory-
based dependences. Hence, we provide a clause (i.e., spacelimit) to the directive
“#pragma vectorize” that can help programmers to limit the additional space
to enable enhanced vectorization of inner-most loops, and the spacelimit is ex-
pressed in multiples of vector registers length. The clause spacelimit essentially
helps our approach to compute strip size that can be vectorized, and the formula
to compute the strip size (in multiples of vector length) is as follows.

strip size =

⌊
spacelimit× V LEN − |TSoV R| × V LEN

|TSiV R| × V LEN

⌋
=

⌊
spacelimit− |TSoV R|

|TSiV R|

⌋
where |TSoV R| and |TSiV R| refer to number of SoVR and SiVR transforma-

tions in the optimal solution respectively. If the strip size value is non-positive
for a given spacelimit, then our approach ignores applying renaming transfor-
mations. Otherwise, our approach does strip mining of the target loop before
applying any of the renaming transformations from the optimal solution.

5 Performance Evaluation

In this section, we present an evaluation of our PolySIMD tool relative to In-
tel’s ICC v17.0 product compiler and to the two algorithms presented in past
work [5, 8] for performing SiVR and SoVR transformations to break cycles of a
dependence graph. We begin with an overview of the experimental setup and the
benchmark suite used in our evaluation, and then present experimental results
for the three different comparisons.
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5.1 Experimental Platforms

Our evaluation uses the following two SIMD architectures. 1) A many-core Intel
Xeon Phi Knights Landing (KNL) processor with two 512-bit vector processing
units (VPU) per core. Thus, each 512-bit VPU can perform SIMD operations
on 16 single-precision floating point values, i.e., the VPU has an effective vec-
tor length of 16 (for 32-bit operands). Since we are evaluating vectorization for
single-threaded benchmarks, we only use one core of the KNL processor in our
evaluation, though our approach can be applied to multithreaded applications
as well. 2) An Nvidia Volta accelerator (Tesla V100) with 80 symmetric mul-
tiprocessors (SMs), each of which can multiplex one or more thread blocks. A
thread block can contain a maximum of 1024 threads, which are decomposed
into 32-thread warps for execution on the SM. Thus, each SM can be viewed
as being analogous to a VPU with an effective vector length of 32 (for 32-bit
operands). For consistency with our KNL results, we only generate one block
of 1024 threads per benchmark, thereby only using one SM in the GPU. How-
ever, our approach can be applied to multi-SM executions as well. Table 4 lists
the system specifications and the compiler options used in our evaluations. The
comparison with ICC could only be performed on KNL, since ICC does not gen-
erate code for Nvidia GPUs. The comparison with the two algorithms from past
work [5, 8] were performed on both platforms.

Intel Xeon Phi Nvidia Volta

Microarch Knights Landing Tesla V100

SIMD lanes 16 SP per VPU (2 VPU’s per core) 32 SP per SM

Compiler Intel ICC v17.0 Nvidia NVCC v9.1

Compiler flags -O3 -xmic-avx512 -O3 -arch=sm 70 -ccbin=icc

Table 4. Summary of SIMD architectures and compiler flags used in our experiments.
SP refers to Single Precision floating point operands, VPU refers to a KNL Vector
Processing Unit, and SM refers to a GPU Streaming Multiprocessor.

5.2 Benchmarks

We use the Test Suite for Vectorizing Compilers (TSVC) benchmark suite in our
evaluation, originally developed in FORTRAN to assess the vectorization capa-
bilities of compilers [4]. Later, the benchmark suite was translated into C with
additional benchmarks to address limitations in the original suite [16], so we used
this C version for our evaluations. A detailed study of these benchmarks, along
with the vectorization capabilities of multiple compilers can be found in [16, 9].
Since our goal is to evaluate the effectiveness of renaming variables on breaking
dependence cycles that inhibit vectorization, we restrict our attention to TSVC
benchmarks that contain multi-statement dependence cycles containing at least
one anti/output dependence and that cannot be broken by scalar privatization.
Further, since PolySIMD is based on a polyhedral optimization framework, we
further restricted our attention to the subset of these benchmarks that do not
contain non-affine expressions that prevent polyhedral analysis5. This selection

5This constraint arises from the implementation of our algorithm in PolySIMD; our
algorithm can be applied in a non-polyhedral compiler setting as well.
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resulted in 11 benchmarks from the TSVC suite that will be the focus of our
evaluation, and are summarized in Table 5.

Benchmark #Stmts #Deps
#Elementary

cycles
Our ILP Solution Compilation time (sec)
#SoVR’s #SiVR’s PolySIMD Total

s116 5 5 1 1 0 0.08 0.10

s1244 2 2 1 1 0 0.01 0.02

s241 2 3 1 1 0 0.01 0.03

s243 3 6 2 1 0 0.02 0.04

s244 3 4 1 1 0 0.02 0.03

s2251 3 4 1 0 1 0.02 0.03

s252 3 5 2 0 2 0.02 0.04

s254 2 2 1 0 1 0.01 0.02

s255 3 6 3 0 2 0.02 0.04

s257 2 3 1 0 1 0.02 0.04

s261 4 9 3 0 2 0.02 0.04

Table 5. Summary of the 11 benchmarks from the TSVC suite used in our evaluation,
including the number of statements, number of dependences, and number of elementary
cycles per benchmark (excluding self-loop cycles). The benchmarks were executed using
N = 225 and T = 200 as input parameters. Number of SiVR and SoVR transformations
performed by PolySIMD for the 11 benchmarks, and also the overall compilation times
required. Coincidentally, none of these benchmarks triggered a case in which both SiVR
and SoVR transformations had to be performed.

Fig. 3. Speedups using PolySIMD on the eleven benchmarks from the TSVC suite,
compiled using the Intel’s ICC v17.0 product compiler and running on a single core of
Intel Knights Landing processor.

5.3 Comparison with ICC

As discussed in Figure 2, PolySIMD takes a sequential program as input, and gen-
erates sequential code as output with selected variable renamings and statement
reorderings that enable enhanced vectorization. Figure 3 shows the speedups
obtained by using PolySIMD as a preprocessor to Intel’s ICC v17.0 product
compiler on the KNL platform. The speedup represents the ratio of the exe-
cution time of the original program compiled with ICC to the execution time
of the transformed program compiled with ICC, using the compiler options in
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Table 4 in both cases. As can be seen in Figure 3, the use of PolySIMD as a
preprocessor results in significant performance improvements for the 11 kernels.
The transformations performed by PolySIMD are summarized in Table 5; the
fact that no benchmark required both SiVR and SoVR transformations is a pure
coincidence. We now discuss the two groups of benchmarks for which PolySIMD
applied the SoVR and SiVR transformations respectively.

Source Variable Renaming (SoVR): The benchmarks s116, s1244,

s241, s243, s244 in the first five entries of Table 5 contain multi-statement
recurrences involving outgoing anti-dependences. Hence, PolySIMD applied the
SoVR transformation on these benchmarks to reposition these outgoing anti-
dependence edges to break the cycles, as dictated by the column titled SoVR
under ILP solution of Table 5. There are a few interesting observations that can
be made from the results in Table 5 for these five benchmarks: 1) The SoVR
transformation enabled vectorization for all five benchmarks (as confirmed by the
compiler log output), and resulted in speedups varying from 1.12× to 21.02× on
Intel KNL relative to the original program using the Intel’s ICC v17.0 product
compiler. 2) The s1244 benchmark involves dead-write statements (i.e., there
are no reads of a write before another statement writing to the same location)
whose removal eliminate dependence cycles. Currently, PolySIMD doesn’t check
for dead-write statements unlike the Intel compiler (with O3 optimization flag
enabled) which remove the dead writes to enable the vectorization. As a result,
there is a lower speedup with our approach compared to the Intel compiler. 3)
The reason for less speedup in case of the s116 benchmark is the generation of
non-unit (unaligned) strided loads and stores leading to inefficient vectorization
(as confirmed by the compiler log output describing the estimated potential
speedup as 1.36×). 4) All these five benchmarks required statement reordering to
be performed after the SoVR transformations, without which the Intel’s compiler
wasn’t able to vectorize. This indicates the necessity of loop transformations
framework to output the final code that can be vectorizable by the existing
compilers.

Sink Variable Renaming (SiVR): The column titled SiVR under ILP so-
lution indicates that the SiVR transformation should be performed on the remain-
ing benchmarks (s2251, s252, s254, s255, s257, s261) in Table 5. These
benchmarks have dependence cycles involving anti- and output-dependences,
and hence our approach chose only the SiVR transformations to break these
dependence cycles. As with the earlier five benchmarks, there are a few inter-
esting observations that can be made from the results in Table 5 for these later
three benchmarks: 1) The SiVR transformation enabled vectorization for all
the remaining six benchmarks, and resulted in speedups varying from 2.02× to
10.77× on the Intel KNL platform relative to the original program. The compiler
log output shows that vectorization was indeed performed in all cases. 2) The
benchmarks s252, s254, s255, s2576 have loop-carried flow-dependence and
loop-independent anti-dependences on scalars, and resolving these dependences
on scalars using our approach introduced higher overhead from temporary arrays

6Also, most of accesses in these benchmarks are dominated with scalars.
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pointer-based loads and stores. As a result, the performance improvements in
these benchmarks are relatively low. 3) As seen with earlier five benchmarks ben-
efited by the SoVR transformation along with the statement reordering, these six
benchmarks also required statement reordering to be performed after the SiVR
transformations, without which the Intel’s compiler wasn’t able to vectorize.

5.4 Comparison with Calland et al’s approach

The heuristics proposed by Calland et al.[5] aim to find the minimum number
of SiVR transformations to break all dependence cycles involving memory-based
dependences. As a result, the heuristics choose only SiVR transformations for
vectorizing all the eleven benchmarks. However, our approach chooses to perform
SoVR transformations on five of the eleven benchmarks (s116, s1244, s241,

s243, s244), since SoVR incurs less overhead than SiVR. Hence, we observe
speedups (shown in Table 6) with our approach relative to Calland et al, varying
from 1.07× to 1.24× on the Intel KNL platform and 1.12× to 1.57× on the
NVIDIA Volta. For the remaining six benchmarks, our approach chose exactly
the same set of SiVR transformations as did their approach, and hence there is no
performance improvement in these cases. The overall geometric-mean speedups
on all of the eleven benchmarks are 1.08× and 1.14× relative to their approach
on the KNL and Volta platforms.

Bench
-mark

Intel KNL NVIDIA Volta
Calland et al.

approach
Chu et al.
approach

Calland et al .
approach

Chu et al.
approach

s116 1.20x 1.03x 1.29x 1.27x

s1244 1.10x 4.03x 1.57x 1.51x

s241 1.07x 1.49x 1.31x 1.70x

s243 1.27x 1.59x 1.47x 1.61x

s244 1.24x 1.22x 1.12x 1.32x

s257 1.00x 9.74x 1.00x 1.08x

s261 1.00x 1.20x 1.00x 1.19x

Table 6. Speedups on the Intel KNL processor and NVIDIA Volta accelerator us-
ing PolySIMD on seven benchmarks from the eleven benchmarks relative to past ap-
proaches, i.e., Calland et al.[5] and Chu et al.[8]. We excluded the remaining four
benchmarks from the table since our results were similar to both of the past works.

5.5 Comparison with Chu et al’s approach

Chu et al. proposed an algorithm for resolving general multistatement recur-
rences which considers both SoVR and SiVR transformation[8]. The solution
obtained by their algorithm depends on a traversal of the dependence graph,
and may not be optimal in general. Further, their algorithm may include redun-
dant SiVR transformations, which were observed when applying their algorithm
to benchmarks s241, s243, s257 and 261, leading to lower performance com-
pared to our approach. We observed performance improvements on these bench-
marks with our approach (relative to Chu et al), varying from 1.20× to 9.74× on
KNL and 1.08× to 1.70× on Volta. For the remaining three benchmarks s116,

s1244 and s244 in Table 6, our approach chose the same solution as their ap-
proach, but we still obtained better performance because PolySIMD generates
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private scalars for SoVR transformations, unlike their algorithm which gener-
ates temporary arrays for the SoVR transformations. The generation of private
scalars enabled our approach to achieve performance improvements speedups
ranging from 1.03× to 4.03× on KNL and 1.27× to 1.51× on Volta. The overall
geometric-mean speedups on all of the eleven benchmarks were 1.57× and 1.22×
on the KNL and Volta platforms.

6 Related Work

Since there exists an extensive body of research literature in handling memory-
based dependences, we focus on past contributions that are closely related to
variable expansion [10], variable renaming including SoVR [15, 5], SiVR [8, 7, 6,
5] and Array SSA [14, 17].

Comparision with past approaches involving SoVR and/or SiVR transforma-
tions. Calland et al. [5] formally defined both SoVR and SiVR transformations,
and also explained the impact of these transformations on a dependence graph.
Also, Calland et al. proved that the problem of finding the minimum number
of statements to be transformed—to break artificial dependence paths involv-
ing anti- or output-dependences—is NP-complete, and proposed some heuristics.
However, the implementation and impact of these techniques on the performance
of representative benchmarks were not mentioned. But, PolySIMD utilizes both
SoVR and SiVR in a complementary manner to coordinate each other, and is
built on a polyhedral framework (PPCG), and leveraged it for statement reorder-
ing to enable vectorization. Also, we did not find a framework publicly available
from the past approaches. Chu et al. work in [8, 7] discussed dependence-breaking
strategies in the context of recurrence relations, and developed an algorithm for
the resolution of general multi-statement recurrences using the proposed strate-
gies. But, the proposed algorithm for the resolution of cycles is not optimal and
may generate solutions having redundant SoVR transformations.

Other works on storage transformations. Array SSA has been developed to
convert a given program into a static single assignment form to enable auto-
matic parallelization of loops involving memory-based dependences [14], and
also to extend classical scalar optimizations to arrays [17]. However, applying
renaming on writes of every statement of a loop body is significantly expensive
in terms of additional space requirements, and may not be required for enabling
vectorization. Other approaches such as variable expansion [10] can be used to
break specific memory-based dependences. The variable expansion may be ben-
eficial for applying onto scalars but expanding multi-dimensional arrays inside
the inner-most loop for vectorization is expensive in terms of additional space.
But, variable expansion can be useful in eliminating pure-output dependence
cycles unlike with SoVR and SiVR, which is a part of our future work.

Bounding additional space. There has been lack of support for bounding
the extra space required to break memory-based dependences in the past ap-
proaches [5, 8]. But, our approach provides a spacelimit clause that can help pro-
grammers to specify the maximum amount of extra storage that can be allocated.
An alternative approach to enable parallelization or vectorization has always
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been to convert the program to (dynamic) single assignment form, through array
expansion, followed by affine scheduling [3] for vectorization, and then applying
storage mapping optimization [2] (a generalized form of array contraction). Yet
no such scheme can provide the guarantees that the affine transformations ob-
tained on the fully expanded arrays will enable storage mapping optimization to
restore a low-footprint implementation. Enforcing an a priori limit on memory
usage would be even harder to achieve. Furthermore, no integrated system en-
abling vectorization through such a complex path of expansion and contraction
has been available until now.

7 Conclusions & Future work

Despite the fact that compiler technologies for automatic vectorization have
been under development for over four decades, there are still considerable gaps
in the capabilities of modern compilers to perform automatic vectorization for
SIMD units. This paper focuses on advancing the state of the art with respect
to handling memory-based anti (write-after-read) or output (write-after-write)
dependences in vectorizing compilers. In this work, we integrate both Source
Variable Renaming (SoVR) and Sink Variable Renaming (SiVR) transforma-
tions into a unified formulation, and formalize the “cycle-breaking” problem as
a minimum weighted set cover optimization problem. Our approach also can
ensure that the additional storage introduced by our transformations remains
within the user-provided bounds.

We implemented our approach in PPCG, a state-of-the-art optimization
framework for loop transformations, and evaluated it on eleven kernels from
the TSVC benchmark suite. Our experimental results show a geometric mean
performance improvement of 4.61× on an Intel Xeon Phi (KNL) machine relative
to the optimized performance obtained by Intel’s ICC v17.0 product compiler.
Further, our results demonstrate a geometric mean performance improvement of
1.08× and 1.14× on the Intel Xeon Phi (KNL) and Nvidia Tesla V100 (Volta)
platforms relative to past work that only performs the SiVR transformation [5],
and of 1.57× and 1.22× on both platforms relative to past work on using both
SiVR and SoVR transformations [8]. We believe that our techniques will be
increasingly important in the current era of pervasive SIMD parallelism, since
non-vectorized code will incur an increasing penalty in execution time on future
hardware platforms.

As part of the future work, we plan to work on extending the unified formula-
tion by including variable expansion [10] and forward propagation techniques [15]
to break pure-output and to handle pure-flow dependence cycles respectively.
Also, we plan to extend our approach and implementation to handle non-affine
regions of codes, and also to support vectorization of outer loops as well. Fur-
thermore, we plan to investigate into enabling loop transformations (such as
tiling in case of cycles on tiles) using variable renaming transformations.
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