
CS 6245, Fall 2018 (V.Sarkar)1

A Unified Approach to Variable
Renaming for Enhanced Vectorization

Prasanth Chatarasi1,
Jun Shirako1, Albert Cohen2 and Vivek Sarkar1

1 Georgia Institute of Technology, Atlanta, USA
2 INRIA & DI ENS, Paris, France

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)2

Introduction
• Strong resurgence of interest in vector processing

—Significant performance and energy efficiency benefits
—Applicable to SIMT parallelization for GPU’s

– Wide vector SIMD units1

• Compilers will continue to play a central role in vectorization
—Programmers still annotate loops for vectorization; leaving hard job

of vectorization to compilers

• Very important to advance state of art vectorizing compiler
technologies to full use SIMD units!

Prasanth Chatarasi et al, LCPC 18

1: https://theincredibleholk.wordpress.com/2012/10/26/are-gpus-just-vector-processors/

CS 6245, Fall 2018 (V.Sarkar)3

Vectorization
• Vectorization of a loop is legal as long as no dependence cycles

• So, we focus on dependence cycles involving memory-based
dependences (anti-, output-)
—These dependences can be eliminated with additional storage
—Past storage transformations

– Variable expansion, Variable renaming, Array SSA,
Privatization..

• Our contributions
1. Unify multiple storage transformations, via a single formulation,

to break cycles optimally
2. Restricting additional space required by transformations

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)4

Agenda
• Introduction
• Background

—Source variable renaming (SoVR)
—Sink variable renaming (SiVR)

• Our approach
—Unifying SoVR and SiVR transformations

• Evaluation
—Intel KNL and Nvidia Volta

• Conclusions and future work

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)5 Prasanth Chatarasi et al, LCPC 18

An example (Calland et al. IJPP’96)

1: for(int i = 1; i < size; i++) {
2: A[i] = B[i] + C[i]; //s1
3: A[i+1] = A[i-1] + 2*A[i+1]; //s2

}

Multi-statement dependence cycles (flow, anti) & (flow, output)

s1 s2
Flow: (A[i] -> A[i-1])

Anti: (A[i+1] -> A[i])

Out: (A[i+1] -> A[i])

CS 6245, Fall 2018 (V.Sarkar)6 Prasanth Chatarasi et al, LCPC 18

Handling (flow, anti) cycle

1: for(int i = 1; i < size; i++) {
2: A[i] = B[i] + C[i]; //s1
3: int k = A[i+1]; //s21
4: A[i+1] = A[i-1] + 2*k; //s2

}

Reading source of anti dependence, A[i+1], from a different location (k)

• The source of anti-dependence moved to s21

1: for(int i = 1; i < size; i++) {
2: A[i] = B[i] + C[i]; //s1
3: A[i+1] = A[i-1] + 2*A[i+1]; //s2

}

s1
Flow: (A[i] -> A[i-1])

Anti: (A[i+1] -> A[i])

Out: (A[i+1] -> A[i])

s2

s1
Flow: (A[i] -> A[i-1])

Anti: (A[i+1] -> A[i])

Out: (A[i+1] -> A[i])

s2s21

CS 6245, Fall 2018 (V.Sarkar)7 Prasanth Chatarasi et al, LCPC 18

Source Variable Renaming (SoVR) (Kuck et al. POPL’81)

• Rename source of anti-dependence into a temporary private
scalar -- Special case of “node splitting”

• Applied on a read access of a statement
—Useful in breaking cycles if the statement has an outgoing anti-

dependence and
– An incoming flow-dependence incident on a different location
– Or An incoming anti- or output-dependences

• The temporary variable introduced is private to the loop
—It has only single use

• SoVR broke (flow, anti), but not (flow, output)?
—Do we have a single storage transformation that can break both?

CS 6245, Fall 2018 (V.Sarkar)8 Prasanth Chatarasi et al, LCPC 18

Handling (flow, anti), (flow, out) cycles

Writing value of sink of anti-dependence, (B[i]+C[i]), into a different
location temp[i], and updating A[i] uses with temp[i].

• Sinks of both anti-, output-dependence are moved to s11

1: for(int i = 1; i < size; i++) {
2: temp[i] = B[i] + C[i];//s1
3: A[i] = temp[i]; //s11
4: A[i+1] = temp[i-1] + 2*A[i+1]; //s2

}

1: for(int i = 1; i < size; i++) {
2: A[i] = B[i] + C[i]; //s1
3: A[i+1] = A[i-1] + 2*A[i+1]; //s2

}

s1
Flow: (A[i] -> A[i-1])

Anti: (A[i+1] -> A[i])

Out: (A[i+1] -> A[i])

s2

s1
Flow: (A[i] -> A[i-1])

Anti: (A[i+1] -> A[i])

Out: (A[i+1] -> A[i])

s2s11

CS 6245, Fall 2018 (V.Sarkar)9 Prasanth Chatarasi et al, LCPC 18

Sink Variable Renaming (SiVR) (Chu PhD thesis’92)

• Rename the sink of anti-, output-dependences into a temporary
array, and change the sink uses with new array

• Applied on a write access of a statement
—Useful in breaking cycles if the statement has

– Either an incoming anti- or output-dependences, and
– Either an outgoing flow- or anti-dependence

• The SiVR transformation introduces a temporary array
—Uses of a sink can be in other iterations

• SiVR broke both (flow, anti) and (flow, output)
—But expensive due to pointer-based loads and stores

CS 6245, Fall 2018 (V.Sarkar)10 Prasanth Chatarasi et al, LCPC 18

Problem statement & Related work
• SiVR can handle more cycles compared to SoVR; however SiVR is

more expensive because it involves pointer-based loads and
stores to array temporaries
—How do you find out the best combination that can break all cycles

optimally, i.e., with less execution overhead?

• Related work in breaking cycles
1. Calland et al. IJPP’96

– Considers only SiVR transformation to break cycles
2. Chu et al. PhD thesis’92

– Considers both SoVR and SiVR transformations, but not optimal

• Our approach
—Optimal solution considering both SoVR and SiVR
—Evaluation in the context of mature loop-optimization framework

CS 6245, Fall 2018 (V.Sarkar)11

Our workflow (PolySIMD)

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)12

Our approach (PolySIMD)
1. Dependence cycles finder

—Johnson’s algorithm1 is used to
enumerate all elementary cycles

—Cycles: (S1, S2)
– (flow, anti), (flow, out)

2. Bipartite graph constructor
—Map between SoVR/SiVR

transformations to the cycles
– Global view for optimality

—Weight for each transformation
based on additional loads/store
introduced

Prasanth Chatarasi et al, LCPC 18

SoVR(s2
,A[i+1])

SiVR(s1,
A[i])

(flow,
anti)

(flow,
out)

s1 s2
Flow: (A[i] -> A[i-1])

Anti: (A[i+1] -> A[i])

Out: (A[i+1] -> A[i])

1. Complexity: O((n+e)(c+1)) where n, e, c are number of vertices, edges and distinct number of elementary cycles respectively.

CS 6245, Fall 2018 (V.Sarkar)13

Our approach (PolySIMD)
3. Solver

—We reduce the problem to
weighted set-cover optimization

—We use standard ILP formulation
to solve the above problem
– Solution: SiVR(s1, A[i])

Prasanth Chatarasi et al, LCPC 18

SoVR(s2
,A[i+1])

SiVR(s1
, A[i])

(flow,
anti)

(flow,
out)

4. Transformer
— Uses statement reordering transformation
— Leverages PPCG code generation capabilities for CPU and GPU code

//CPU code (ignoring boundary conditions)
1: for(int i = 1; i < size; i++) {
2: temp[i] = B[i] + C[i];//s1
3: A[i+1] = temp[i-1] + 2*A[i+1]; //s2
4: A[i] = temp[i]; //s11
}

//CUDA kernel (ignoring boundary conditions)
1: for(int i = threadId.x; i < size; i+=1024){
2: temp[i] = B[i] + C[i];//s1

__syncthreads();
3: A[i+1] = temp[i-1] + 2*A[i+1]; //s2

__syncthreads();
4: A[i] = temp[i]; //s11
}

CS 6245, Fall 2018 (V.Sarkar)14

Overview of today’s talk
• Introduction
• Background

—Source variable renaming (SoVR)
—Sink variable renaming (SiVR)

• Our approach
—Integration of SoVR and SiVR transformations

• Evaluation
—Intel KNL and NVIDIA Volta

• Conclusions and future work

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)15

Evaluation (CPU)
• Experimental setup

—On a single core of Intel KNL
– 2 VPU’s per core (512-bit vector wide)

Potential for 32x speedup due to vectorization of 32-bit floats
– Compiler & flags: Intel ICC v17.0 -O3 -xmic-avx512

• Evaluation on single threaded benchmarks
—C version of the TSVC suite (Callahan et al., SC’88)
—We restrict our attention to benchmarks with

– Multi-statement dependence cycles containing at-least one anti-
/output-dependence, which are breakable by SoVR/ SiVR

– Analyzable affine programs
—11 TSVC benchmarks satisfy the above criteria

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)16

Summary of benchmarks

• Coincidentally, none of these benchmarks triggered a case in
which both SiVR and SoVR transformations were performed.
—The paper includes an example from a past approach (Calland et

al.) that triggers both SiVR and SoVR transformations

• Compilation time is not an issue, even with ILP solver

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)17

Performance comparison: Variants
• Four variants

—Original kernel (Relying on ICC auto-vectorizer)
– Considers neither SoVR nor SiVR

—Vectorized kernel after applying Calland’s approaches
– Considers only SoVR

—Vectorized kernel after applying Chu’s approach
– Considers both SoVR and SiVR; but sub-optimal

—Vectorized kernel after applying PolySIMD (our) approach
– Considers both SoVR and SiVR, and optimal

• Past approach variants (Calland’s and Chu’s) are generated by
our tool by bypassing solver and feeding the solutions

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)18 Prasanth Chatarasi et al, LCPC 18

1) Comparison with ICC + O3 (auto-vectorizer)
Sp

ee
du

p
re

la
tiv

e
to

 o
rig

in
al

 p
ro

gr
am

0

6

12

18

24

s116 s1244 s241 s243 s244 s2251 s252 s254 s255 s257 s261 Geometric  
mean

4.61

10.78

2.212.412.482.02

10.18

21.03

10.99

7.84

3.34

1.12

Intel KNL (single core)

Our approach: SoVR Our approach: SiVR

—S116: involves lot of unaligned memory stores and loads
—S1244: involves dead writes && O3 eliminates them
—Most of dependences in s252, s254, s255, s257 are on scalars, and

replacing with arrays didn’t result in much improvement
—ICC required all of them to be reordered for vectorization.

CS 6245, Fall 2018 (V.Sarkar)19

2) Comparison with Calland’s approach
Sp

ee
du

p
re

la
tiv

e
to

 C
al

la
nd

’s

ap
pr

oa
ch

0.9

1.45

2

s116 s1244 s241 s243 s244 s2251 s252 s254 s255 s257 s261 Geometric  
mean

1.08
1.001.001.001.001.001.00

1.241.27

1.071.10

1.20

Intel KNL (single core)

Prasanth Chatarasi et al, LCPC 18

Calland’s approach: SiVR

—Speedup’s from s116 to s244
– Our approach chose SoVR for s116–s244 benchmarks since

SoVR incurs less overhead compared to SiVR

CS 6245, Fall 2018 (V.Sarkar)20

3) Comparison with Chu’s approach
• Chu’s approach – considers both SoVR and SiVR

—No global view of cycles and transformations that can break them

—s241, s243, s257, s261
– Chu’s approach applied redundant SoVR/SiVR transformations

—s116, s1244, s244
– Chu’s approach generates temporary arrays for SoVR

Sp
ee

du
p

re
la

tiv
e

to
 C

hu
’s

ap

pr
oa

ch

0

1

2

3

4

5

s116 s1244 s241 s243 s244 s2251 s252 s254 s255 s257 s261 Geometric  
mean

1.57
1.20

9.74

1.001.001.001.00
1.22

1.591.49

4.03

1.03

Intel KNL (single core)

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)21

Coverage: Vectorization summary

Prasanth Chatarasi et al, LCPC 18

kernel ICC + O3
(Auto vec)

Calland’s
approach

Chu’s
approach

Our
approach

s116 No Yes Yes Yes
s1244 Yes Yes Yes Yes
s241 No Yes Yes Yes
s243 No Yes Yes Yes
s244 No Yes Yes Yes
s2251 No Yes Yes Yes
s252 No Yes Yes Yes
s254 No Yes Yes Yes
s255 No Yes Yes Yes
s257 No Yes Yes Yes
s261 No Yes Yes Yes

4.61x 1.08x 1.57x
Geometric mean speedup of our approach

CS 6245, Fall 2018 (V.Sarkar)22

Evaluation (GPU)
• We use the same 11 benchmarks from TSVC

• Experimental setup
—On Nvidia Volta device

– For consistency with single-threaded execution on KNL, we
use single block (1024 threads)

– Compiler & flags: NVCC v9.1 -O3 -arch=sm 70 -ccbin=icc

• Since original program cannot be run on GPU, we compare our
approach with only past approaches (using code generated by
our compiler in all cases)

Prasanth Chatarasi et al, LCPC 18

CS 6245, Fall 2018 (V.Sarkar)23

Performance comparison on GPU

Prasanth Chatarasi et al, LCPC 18

kernel Speedup over
Calland’s approach

Speedup over Chu’s
approach

s116 1.29x 1.27x
s1244 1.57x 1.51x
s241 1.31x 1.70x
s243 1.47x 1.61x
s244 1.12x 1.32x
s2251 1.00x 1.00x
s252 1.00x 1.00x
s254 1.00x 1.00x
s255 1.00x 1.00x
s257 1.00x 1.08x
s261 1.00x 1.19x

Our approach
chose SoVR
instead of
SiVR

Redundant
transforma
tions, and
generation
of array
temporaries

1.14x 1.22x
Geometric mean speedup of our approach

CS 6245, Fall 2018 (V.Sarkar)24

Conclusions & Future work
• Our contributions

1. Unify multiple storage transformations to break cycles optimally
2. Restricting additional space required by transformations

– For details, we refer to the paper
3. Evaluation in the context of mature loop-optimization framework

• Future work
—Extend our framework with additional storage transformations
—Systematically leverage storage transformations to enable loop

optimizations

Prasanth Chatarasi et al, LCPC 18

Any questions?

