
Techniques for Combining Testing and Verification

for Efficient Assertion Checking in Sequential

Programs

Prasanth Chatharasi

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Bachelor of Technology

Department of Computer Science and Engineering

May 2011

Declaration

I declare that this written submission represents my ideas in my own words, and where ideas or

words of others have been included, I have adequately cited and referenced the original sources. I

also declare that I have adhered to all principles of academic honesty and integrity and have not

misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand

that any violation of the above will be a cause for disciplinary action by the Institute and can also

evoke penal action from the sources that have thus not been properly cited, or from whom proper

permission has not been taken when needed.

————————–

(Signature)

—————————

(Prasanth Chatharasi)

—————————–

(Roll No.)

Approval Sheet

This Thesis entitled Techniques for Combining Testing and Verification for Efficient Assertion

Checking in Sequential Programs by Prasanth Chatharasi is approved for the degree of Bachelor

of Technology from IIT Hyderabad

————————–

(Dr. Aditya Nori) Adviser

Microsoft Research, Bangalore

Adjunct Faculty,

Dept. of Computer Science Eng

IITH

————————–

(Dr. M.V. Panduranga Rao) Co-Adviser

Dept. of Computer Science Eng

IITH

Acknowledgements

I would like to express my deepest respect and sincere gratitude to my adviser Dr. Aditya Nori,

Microsoft Research Bangalore, for his constant guidance and encouragement at all stages of my work.

I am fortunate to have had technical discussions with him, from which I have benefited enormously.

I sincerely thank him for all those valuable long hours he has spent with me.

I am extremely grateful to my co-adviser Dr. M. V. Panduranga Rao, for his constant en-

couragement and support all through my work. I am thankful to him for all the invaluable advice on

both technical and nontechnical matters. The discussions with him have been a source of motivation

and energy for me to persist in the field of research.

I would like to show my greatest appreciation to my well wisher Dr. Kesav Nori. I cannot say

thank you enough for his tremendous support and help. I felt motivated and encouraged every time

I met him.

I am extremely thankful to all faculty members of the Department of Computer Science and En-

gineering for sharing their views and giving valuable suggestions during the discussion of my work

in department reviews.

I thank our director Prof. U. B. Desai for his friendly administrative support in getting all

our requirements done as quickly as possible.

I thank all my classmates and research scholars for their friendly support who made the stay at

this institute enjoyable, we shared joy and knowledge. I thank all my friends at IIT Hyderabad for

the same. Especially, I would like to thank my room-mate Shanthanu Deshpande for his encourage-

ment in ups and downs.

I deeply express my loving thanks to my mother and father for their encouragement, care and

love. I express my heartfelt appreciation and gratitude to my dear sister Pavani and brother Sreeni-

vas for their esteemed support.

Finally, I thank everyone who helped me directly or indirectly during my stay at IIT Hyderabad.

iv

Dedication

This work is dedicated to My grandfather, Ch. Rama Rao

v

Abstract

The property checking problem is to check if a program satisfies a specified safety property. Two

well known approaches for property checking are testing and verification. Testing finds out bugs in

a program easily but it is difficult to prove the absence of bugs whereas verification is easy to find

the proof for correctness rather than finding bugs in the program. Each approach has its strengths

and weaknesses.

In this thesis, we summarize recent contributions in the area of testing and verification for the

property checking problem. We also discuss some concepts prerequisite to techniques in testing and

verification. SMASH, a first 3-valued compositional may-must analysis algorithm, combines testing

and verification in a novel way for proving safety properties of a program [P. Godefroid, A. V. Nori,

S. K. Rajamani, and S. Tetali, Compositional may-must program analysis: Unleashing the power

of alternation, in POPL 10: Principles of Programming Languages. ACM Press, 2010]. SMASH

algorithm is not guaranteed to terminate for recursive programs where data types are unbounded or if

dynamic allocation is allowed. But, SMASH algorithm may not terminate on some class of recursive

programs where data types are bounded and dynamic allocation is not allowed. We elaborate the

problem with examples and conclude with an idea to solve the problem.

vi

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . vi

List of Algorithms 1

List of Figures 2

List of Symbols 3

1 Introduction 4

1.1 Contribution and Scope of work . 6

1.2 Organization of thesis . 6

2 Background 8

2.1 Assertions . 8

2.2 Symbolic execution . 10

2.3 Theorem prover . 11

3 Test input generation 12

3.1 Random test case generation . 12

3.2 Static test case generation . 13

3.3 Dynamic test case generation . 14

3.4 Dynamic Automated Random Testing . 15

3.4.1 Algorithm . 16

3.4.2 Advantages . 17

3.5 Extensions of DART . 18

3.5.1 Concolic Unit Testing . 19

3.5.2 Systematic Modular Automated Random Testing 21

4 Synergy 23

4.1 Motivation and Introduction . 23

4.2 Synergy Algorithm . 24

4.2.1 Definitions . 24

4.2.2 Algorithm . 25

vii

4.3 Examples . 25

4.3.1 Synergy results in finding Proof . 26

4.3.2 Synergy results in finding test case . 27

4.3.3 Synergy results in non terminating . 28

4.4 Conclusion . 28

5 DASH 29

5.1 Motivation and Introduction . 29

5.2 DASH Algorithm . 30

5.2.1 Description of algorithm . 30

5.2.2 Sketch of DASH . 30

5.3 Handling Pointers . 32

5.3.1 Description . 32

5.3.2 Example . 33

5.4 Handling Inter procedure calls . 35

5.4.1 Description . 35

5.4.2 Example . 36

5.5 Conclusion . 38

6 SMASH 39

6.1 Motivation and Introduction . 39

6.2 Summaries . 40

6.2.1 May summary . 40

6.2.2 ¬ May summary . 40

6.2.3 Must summary . 41

6.3 Differences between SMASH and DASH . 41

6.4 Illustration . 42

6.4.1 Computing ¬May summary . 42

6.4.2 Computing Must summary . 43

6.4.3 Computing ¬May summary using Must summary 44

6.4.4 Computing Must summary using ¬May summary 45

7 Problem Statement 46

7.1 Recursive procedures of infinite data type domain . 46

7.2 Recursive procedures of finite data type domain . 47

7.2.1 SMASH - Terminating . 47

7.2.2 SMASH - Non terminating . 49

8 Solution 50

8.1 Feasible Solution . 50

8.2 Illustration . 51

References 53

viii

List of Algorithms

1 Dynamic Automated Random Testing . 16

2 Synergy . 25

3 DASH . 31

1

List of Figures

4.1 Example on which Synergy results in proof . 26

4.2 Example on which Synergy results in test case . 27

4.3 Example on which Synergy results in non termination 28

5.1 Sketch of DASH . 30

5.2 Example on which DASH results in proof . 33

5.3 Finite indexed abstraction . 34

5.4 Example on which DASH handles inter procedural calls 36

5.5 Finite indexed abstraction . 37

2

List of Symbols

ǫ Null

〈Σ, σI ,→〉 Concrete program P

〈Σ≃, σ
I
≃
,→≃〉 Abstract program P

φ Constraints

ρ Predicate

→ Transitive Relation

→≃ Transitive Relation on equivalence classes of ≃

Σ Set of states

σI Set of initial states

σI ≃ Set of equivalence classes that contain initial states

Σ≃ Set of equivalence classes of ≃ in Σ

∗

→ reflexive-transitive closure of →

τ Abstract trace

τerr Abstract error trace (S0, S1, ...)

ϕ Set of bad states

ϕ≃ Set of equivalence classes that contain bad states

Sk → Sk+1 Frontier edge

A Abstraction of a program P

F Forest containing set of concrete paths of a program P

S symbolic memory map obtained by performing symbolic execution

S0 A state ∈ Σ≃

s0 A state ∈ Σ

Sx Symbolic name for variable x

t Concrete error path

3

Chapter 1

Introduction

Today, checking the correctness of a software has become the primary goal of software industries

for quality assurance. Usually, checking the correctness of software nearly accounts for 50% of the

cost of software development [1]. Correctness is one of the properties associated with a program.

There are several types in properties of a program. Safety properties assert that program does not

exhibit bad behaviour. An example for the safety property is that the program never goes into an

error state. Liveness properties show that program does something useful. Currently, we limit our

discussion to proving safety properties of a program. Property checking or assertion checking is

checking if the property is satisfied by all possible executions.

Two broad approaches to property checking are program testing and program verification. Pro-

gram testing tries to find inputs to demonstrate violations of the property. According to Edsger W.

Dijkstra [2], “Program testing is a very effective way to show the presence of bugs, but it is hope-

lessly inadequate for showing their absence. The only effective way to raise the confidence level of a

program significantly is to give a convincing proof of it’s absence”. After executing number of tests,

we are not sure about the existence of another input that violates the property. Program verification

tries to construct a formal proof that shows that program always satisfies the property in all of its

possible executions. Some times, program verification leads to non termination in computing the

over approximation of the possible program executions. Generally, user intervention is needed to

terminate the computation and it leads to less adoption in industries.

Program analysis is the process of analysing the behaviour of programs. Program analysis tools

automatically analyze the program and proves certain properties. There has been a lot of attention

received in last few decades for these tools to check the properties [3]. These tools can be categorized

using their approach towards proving properties. These categories are program testing and program

verification.

Tools based on program testing search for inputs that violates property by executing the program

in one form or the other. There are several techniques in program testing to find such inputs. At

one extreme, program is executed on chosen concrete inputs to check the violation of properties.

These concrete inputs are chosen by random generators, test case generators [4] or manually. All

4

these methods have their advantages and limitations. At another extreme, program is executed

symbolically [5] to characterize all possible paths in the program. Then, each and every path is

examined using automated constraint solver [6] for violation of property. Since constraint solver

has limitations, this method doesn’t guarantee the complete coverage. As a result, many interme-

diate solutions are pursued to check the properties such as directed testing [7]. In this method, the

program is executed on a random concrete input and collects the constraints along the path using

symbolic execution [5]. Then, this information is subsequently used to find another test that drives

the program execution into another path. This process is repeated until it finds an input that violates

the property. This idea has been implemented in a tool called Dynamic Automatic Random Testing

(DART) [7]. Later, this has been enhanced to support pointers and implemented in a tool called

Concolic Unit Test Engine (CUTE) [8]. Then, this has been extended by encoding test results and

implemented in a tool called Sub Modular Automated Random Testing (SMART) [9]. But, it is very

difficult using these tools to say that there are no inputs that violates the property. It can be done

if complete coverage is ensured by a test case generator and there are no generation of false witnesses.

Tools based on program verification search for a proof to show that program always satisfies the

property. There are several techniques in program verification. At one extreme, deductive verifica-

tion [10] is used to construct formal proof. According to Floyd [11], “Inductive Invariant technique

is the right way of using induction for proving properties of imperative programs”. In deductive

verification, initially an inductive invariant is to be proved on the program. It means that the invari-

ant holds in the initial state of the program and if it holds in some state then it continues to hold

in every successor state as well. Thus, if the inductive invariant implies the desired property, then

the proof is complete. The hardest part of proof is finding the inductive invariant. Recently, some

methods are proposed to iteratively refine the invariants to get the suitable inductive invariant for

proof. At other extreme, model checking [12] is used to automatically verify properties of programs.

In this classical model checking, reachable state space is constructed for finite state programs and

is checked for truth of property. In order to support infinite state programs, an abstract program

containing finite number of executions is derived from the infinite state program. If there is a bug

in the original program, then there must be a corresponding bug in the abstract program. But if

the model checker finds a bug in the abstract program, it will not necessarily indicate a bug in the

original program. If such a situation occurs, then the abstract program is refined to eliminate this

spurious counter example. This method has been implemented in a tool called SLAM [13] that uses

predicate abstraction and automatic partition refinement. Later, BLAST [14] has been employed

with counter example driven automatic abstraction refinement to construct an abstract model that

is model-checked for safety properties. But it is very difficult using these tools to report some input

that violate the property. It may be done as only a by-product of expensive, failed search proof.

Recently, a lot of importance has been given to combining testing and verification for proving

properties of program. In Synergy [15], directed testing and abstraction refinement based verifica-

tion algorithms are combined in a novel way to prove safety properties of program. Later, it has

been enhanced in DASH [16] by supporting the pointers and functions. Then, it has been extended

further in SMASH [17] by encoding the analysis results for better performance.

5

These tools all combine techniques from static program analysis (symbolic execution), dynamic

analysis (testing and run time instrumentation), model checking (systematic state-space explo-

ration), and automated constraint solving. Static program analysis helps in constructing formal

proofs for program verification and dynamic program analysis helps in finding a test input for pro-

grams testing.

1.1 Contribution and Scope of work

The contribution of this work is as follows.

1. An exposition of fundamental concepts like symbolic execution and test generation tools like

Dynamic Automatic Random Testing (DART)[7], Concolic Unit Test Engine (CUTE) [8] and

Sub Modular Automated Random Testing (SMART) [9] that are prerequisite for research in

program analysis.

2. Survey of recent advances in combining testing and verification for property checking problem

and explanation of tools like Synergy [15], DASH [16], and SMASH [17] that combines testing

and verification in a novel way.

3. SMASH [17] is not guaranteed to terminate for recursive programs where data types are

unbounded or if dynamic allocation is allowed. But, SMASH may not terminate on some class

of recursive programs where data types are bounded and dynamic allocation is not allowed.

We illustrate the problem using examples and conclude with an idea to solve the problem.

4. Illustrations of some of above tools using new examples.

The present work remains in the scope of proving properties of sequential programs. The goal

of this work is to put the existing series of algorithms in a sequence for a better understanding of

current research in program analysis. So, we have described the algorithms in a more readable form

and ignored details of theoretical analysis of algorithms and practical implementations. We consider

only side effect free expressions in the program for property or assertion checking. Please see the

cited works for details.

1.2 Organization of thesis

The contents of thesis are organized as follows.

In Chapter 2, we explain the fundamentals like assertions, symbolic execution and automated

constraint solver or theorem prover.

In Chapter 3, we explain test case generation in detail. We begin with random test case gen-

eration and followed by static and dynamic test case generations along with their advantages and

limitations. Then, we explain the tools DART, CUTE and SMART that uses the dynamic test case

generation. We conclude with advantages and limitations of above tools.

6

In Chapter 4, we describe Synergy algorithm, that combines testing and verification in a novel

way. We begin with motivation towards the idea of Synergy algorithm. Then, we give an intro-

duction to ideas in Synergy algorithm. Then, we describe the algorithm in a readable manner.

Then, we give the illustration of Synergy algorithm over three kinds of examples, which results in ei-

ther proof or test input or non terminating. Finally, we conclude with the limitation of the algorithm.

In Chapter 5, we describe the DASH algorithm, an extension of Synergy algorithm. We begin

with limitations of Synergy algorithms and introduce the ideas towards uplifting limitations. Then,

we describe the algorithm using the same notations followed in earlier chapter. Then, we give illus-

trations of DASH algorithm over examples. Then, we conclude with limitations of DASH algorithm.

In Chapter 6, we begin with motivation towards SMASH algorithm. Then, we describe the no-

tion of summaries that are encoded analysis results. Then, we describe ¬ May and Must summaries

for answering queries over a function. Then, we give some illustrations towards the alternation of

those summaries for better performance.

In Chapter 7, we describe the limitations of SMASH algorithm through examples. SMASH

would not be guaranteed to terminate over recursive programs which have infinite data type do-

mains or dynamic memory allocations [17]. In this chapter, we first provide an example of such

program. Secondly, it was not known whether SMASH can be terminated on all programs having

finite data type domains and not having dynamic memory allocations. We then show an example

where SMASH fails on a program with above two properties. Finally, we conclude this chapter by

showing a way to handle such cases with an example.

In Chapter 8, we describe an idea to solve the problem. We conclude the chapter by illustrating

the solution using the idea.

7

Chapter 2

Background

In this chapter, we explain concept of assertions, notion of symbolic execution and idea of automated

constraint solver or theorem prover. It forms the background in understanding the algorithms for

property checking.

2.1 Assertions

Assertion is a predicate that asserts about values which the relevant variables will take at that

particular point of time in execution.

x := 5;

{x > 0} -- Assertion

x := x + 1

{x > 1} -- Assertion

In the above example, x > 0 and x > 1 are assertions. Precondition of a program is an assertion

that specifies the relationship between variables before execution of the program. Post condition of

a program is an assertion that describes the intent of that program. Let Q, P and R be the symbolic

notations for the program, precondition, and postcondition respectively. We use notation P{Q}R to

say that if the assertion P is true before initiation of program Q, then the assertion R will be true

on its completion. Now, we explain the axioms and rules of inferences associated with programming

statements.

Axiom of an assignment statement: Let assignment statement be x = f, where x is an identifier

for a simple variable and f is an expression possibly containing x. The axiomatic schema for the

above statement is P {x = f} P1, where P is obtained from a given P1 by substituting f for all

occurrences of x. A new P will be obtained for every assertion substituted for P1. The above

schema describes infinite set of axioms which share common pattern.

Rules of consequence: The rule of inference takes the form “ ⊢X and ⊢Y then ⊢Z ”. It means, if

assertions of form X and Y have been proved as theorems, then Z is also proved as theorem. Some

8

of the rules of consequence are listed below.

If P{Q}R and R⇒ S then P{Q}S

If P{Q}R and S ⇒ P then S{Q}R

Rule of composition: Let Q1 and Q2 be two sequences of statements that are executed one after

another. The inference rule associated with composition is as follows.

If P{Q1}R and R{Q2}S then P{Q1;Q2}S.

Rule of iteration: The general notation of looping statements is “ While B do S ”. Suppose P

is an assertion, which is always true on completion of S, provided that it is true on initiation also.

Formally,

If P ∧B{S}P then {while B do S}¬B ∧ P.

Now, we discuss the method of deductive reasoning to prove certain properties of a program. An

important property of program is partial correctness (proving correctness without termination)

Deductive reasoning: It involves application of rules of inference to sets of valid axioms for

proving properties of program. Let Q, P, and R be a program, precondition, and post condition

respectively. Then, deducing P{Q}R leads to satisfying necessary condition for partial correctness

of program Q. Consider the following program to illustrate the deductive reasoning.

int foo (int x) {

y = x + 2 ;

return y;

}

Assume that, the input to the above program is always greater than or equal to 0. We wish to

prove the correctness of above program, the value of y should be greater than or equal to 2. The

precondition for above program is “x ≥ 0” and postcondition is “y ≥ 2”. To prove the partial

correctness of above program, we need to deduce “x ≥ 0 {foo} y ≥ 2”

Using Axiom of assignment ⊢ {x+ 2 ≥ 2} y = x+ 2 {y ≥ 2}

⊢ x ≥ 0 =⇒ x+ 2 ≥ 2

Using rule of consequence ⊢ {x ≥ 0} {y = x+ 2; } {y ≥ 2}

Using rule of composition ⊢ {x ≥ 0} {y = x+ 2; return y; } {y ≥ 2}

Finally, “ x ≥ 0 {foo} y ≥ 2 ” is deduced. Hence, the partial correctness of above program is

proved using deductive reasoning. However, proving properties of programs, containing million lines

of code, is difficult using the deductive verification approach.

9

2.2 Symbolic execution

In this section, we discuss about symbolic execution. Then, we illustrate it using an example.

Finally, we conclude this section with limitations.

Description: Symbolic execution is equivalent to executing the program “symbolically” by giving

symbols as inputs to program. It symbolically explores the possible behaviours of a program and

characterizes them using path conditions. Path condition is the accumulator of properties from

branch conditional statements along the path. If program execution follows a path with given

inputs, then those inputs should satisfy the path condition associated with that path. Now, every

path is associated with the path condition and final state values of program variables. The results of

symbolic execution may be equivalent to a results of same program over large number of test cases.

Verification: Symbolic execution can be used to verify certain safety properties of program. In

this approach, each path condition and its final state values will be used to check against safety

property. If some path condition and its final state values violates the property, then path condition

will be given to constraint solver to get feasible inputs which satisfies the constraints. If all the path

conditions and its final state values satisfy the property, then it will acts as proof for correctness of

that safety property.

Test generation: Symbolic execution can be used to generate test cases that may covers all

the possible program behaviours of program. It may give complete coverage depending upon the

complexity of constraints in branching statements. After executing the symbolic execution, all the

path condition are given to constraint solver to generate the minimal number of test cases that

covers the most possible behaviours of the program.

Illustration: Consider the following program to illustrate the symbolic execution.

int function (int x) {

if (x == 10) abort ; // error

else print "hi";

return 0;

}

Let Sx be symbolic name for variable x. There are two possible execution paths in above pro-

gram, one following if branch and another following else branch. After symbolic execution, the

corresponding path conditions for above paths are Sx = 10 and Sx != 10 . Now these constraints

are given to constraint solver to generate test cases. The possible test inputs from constraint solver

are 10 and 15 (random).

Limitations : It cannot ensure complete coverage if the program contains statements involving

constraints outside the scope of reasoning of the constraint solver. This limitation is illustrated using

the following example [9].

10

void obscure (int x, int y) {

if (x == hash(y)) error ;

}

Assume, function hash cannot be reasoned about symbolically. Let Sx and Sy be symbolic variables

for x and y. After performing symbolic execution, the path conditions for two paths are (Sx =

hash(Sy)) and (Sx != hash(Sy)). These constraints are given to constraint solver for feasible test

cases. But, hash function is out of scope of constraint solver. At this instant, it cannot generate two

values for inputs that are guaranteed to satisfy (or violate) the constraint (Sx = hash(Sy)).

2.3 Theorem prover

Theorem provers or constraint solvers are used to validate the expression and finds the assignment

to variables in that expression to make it true. Automated theorem proving is proving mathe-

matical theorem by a computer program. Since validation of expressions under different logic’s is

undecidable, there exists no perfect tool which can validate any kind of expression. But according

to Godel’s completeness theorem, validation of expressions in first order predicate calculus is done

in polynomial time. We use mostly theorem provers for validating the expressions over first order

predicate logic. Automated theorem prover some times called as automated constraint solver since

it can automatically solve constraints and gives feasible inputs. There exist many automated con-

straint solver like Z3 [18] to solve the expressions in first order logic. They gives feasible input if the

expression is valid otherwise returns saying infeasible expression.

In this section, we consider a basic interpretation oriented theorem prover over integers [6].

It is a basic theorem prover for validating expressions over integers. This theorem prover was

built around powerful system for manipulating and simplifying integer expressions which is called as

Formula Simplifying System. This system takes input expressions which are in the form of disjunctive

normal form. So, given logical expression is converted into disjunctive normal form and will be fed

into Formula system. It will solve the expression and returns the feasible values to variables in the

expression.

11

Chapter 3

Test input generation

In this chapter, we begin with definition of test input generation or test case generation. Then, we

describe the random test case generation and followed by static and dynamic test case generations

along with their advantages and limitations. Then, we explain the tools that employs the dynamic

test case generation namely DART, CUTE and SMART. Finally, we conclude this chapter by listing

the advantages and limitations of techniques employed in these tools.

Definition: Consider a sequential, deterministic program P consisting of a set of program state-

ments S (assignments, tests, loops, etc.). Given an input I, program P computes value v = P(I)

(also called output) where v is the output of execution of P on input I. Then the problem of test

input generation is defined as follows: Given a statement s ∈ S of a program P, compute an input I

such that the execution of program P on input I reaches statement s.

3.1 Random test case generation

In this approach, test inputs are chosen randomly over the domain of potential inputs for a given

program. Consider the following program to illustrate the random test case generation.

int function (int x) {

if (x == 10)

error;

return 0;

}

In the above program, assume x is a 32 bit integer. With the above approach, the value of x is

randomly chosen over domain of 32 bit integers. Then, chance of following the then branch of

conditional statement “ if (x == 10)” is 1

232
and is significantly low. As a result, this approach has

very less chance to exercise then branch of the conditional statement and reach the error. If the

conditional statement is “ if (x != 10)”, then the chance of exercising the then branch is very high.

Limitations: Since the inputs are chosen randomly over input domain, many set of inputs may

follow the same path and leading to the same observable behaviour. The chance of choosing the

random input that results in buggy behaviour is very less in this approach.

12

3.2 Static test case generation

In this section, we discuss about static test case generation. It generates the test cases by statically

analyzing the given program. It uses most of the techniques from symbolic execution. Symbolic

execution has been discussed in chapter 2. Symbolic execution attempts to compute the inputs to

drive the program along specific execution paths, without ever executing program. The basic idea of

symbolic execution is to explore the tree of all the computations that the program exhibits with all

possible value assignments to input parameters. Symbolic execution constructs the path condition

for every control path in the program. The path condition characterizes the set of inputs for which

program execute along that path. Path condition is a conjunction of constraints on inputs.

Generating test cases: In order to generate test cases, program will be executed symbolically

and explores possible program behaviours. Symbolic execution generates the path condition for each

path. If the path condition is feasible to solve, then constraint solver outputs the feasible test input.

Now, each path condition is given to constraint solver to generate inputs that satisfies the path

condition. Assuming that the constraint solver used to check the satisfiability of all path constraints

is sound and complete, this use of static analysis amounts to a kind of symbolic testing.

Illustration: Consider the following program to illustrate the static test case generation.

int main (int x, int y){

if (x > 10) {

if (y < 20) {

S1; // Statement

} else {

error; // Statement

}

}

S2; // Statement

}

Assume Sx and Sy are symbolic notations for input variables x and y. In the above program, there

are three feasible paths. After performing symbolic execution, the path conditions for paths in above

program are (Sx > 10 & Sy < 20), (Sx > 10 & Sy ≥ 20) and (Sx ≤ 10). These path conditions

are given to constraint solver for solving each of them. The feasible test inputs for above program

would be (15, 10), (20, 25) and (5, 10). But the program execution on input (20, 25) leads to error

statement.

Limitations : It cannot ensure complete coverage if the program contains statements involving

constraints outside the scope of reasoning of the constraint solver.

13

3.3 Dynamic test case generation

In this section, we discuss about dynamic test case generation, another approach towards generating

test cases for a given program. Dynamic test case generation consists of analyzing the program by

executing several times. It uses symbolic execution and run time information to compute appropriate

inputs to drive along specific execution paths or branches of a program.

Steps: Dynamic test generation consists of

1. Executing the program P, starting with some given or random inputs

2. Gathering symbolic constraints on inputs at conditional statements along the execution and

3. Using a constraint solver to infer variants of the previous inputs to steer the programs next

execution toward an alternative program branch.

This process is repeated until a specific program statement (error) is reached. whenever symbolic

execution doesnt know how to generate a constraint for a program statement depending on some

inputs, that constraint will be simplified using inputs concrete (execution) values at that point of

execution.

Illustration: Consider the following program to illustrate dynamic test case generation.

void obscure (int x, int y) {

if (x == hash(y))

error; //

}

Assume, function hash cannot be reasoned about symbolically. Let Sx and Sy be symbolic

variables for x and y. After performing symbolic execution, the path conditions for two paths are (

Sx = hash(Sy)) and (Sx != hash(Sy)). These constraints are given to constraint solver for feasible

test cases. But, hash function is out of scope of constraint solver. At this instant, it cannot generate

two values for inputs that are guaranteed to satisfy (or violate) the constraint (Sx = hash(Sy))

using symbolic execution. At this time, run time information is used to address the above problem.

The following steps illustrate the typical process of generating test inputs using this approach.

1. First execution: Let random inputs of x and y be 33 and 42 respectively. Assume, hash(42)

is equal to 567. Then, program execution on these inputs doesn’t follow then branch in

above program. The constraints captured during symbolic execution along this path are (Sx

!= hash(Sy)). This constraint is negated to find another input which drive program along

different path. So, the constraints to be solved are (Sx = hash(Sy)). Since this constraint

is out of scope of constraint solver, this constraint is simplified using run time information of

concrete values of inputs at that point of execution. In this case, hash(Sy) will be replaced

by 567 and the simplified constraint is (Sx != 567). This is solved by constraint solver and

generates the input value for x and y as 42 and 567 respectively.

2. Second execution: Now the inputs to above program are 42 and 567 respectively. The

program execution execution will follow the then branch on these inputs and error statement

will be reached.

14

Advantages: This approach can easily drive the above program execution through all its feasible

program paths where as static test generation is unable to generate test inputs to above example.

This approach can alleviate imprecision in symbolic execution by using concrete values and random-

ization. In practise, imprecision in symbolic execution typically arises in many places, and dynamic

test generation can recover from that imprecision. Dynamic test generation can be viewed as ex-

tending static test generation with additional run time information. It can use the same symbolic

execution engine and use concrete values to simplify constraints outside the scope of the constraint

solver.

Limitations: Practically, this approach typically cant explore all the feasible paths of large pro-

grams in a reasonable amount of time. However, it usually does achieve much better coverage than

pure random testing and symbolic testing.

3.4 Dynamic Automated Random Testing

In this section, we discuss a tool called Directed Automated Random Testing, or DART. Then, we

continue with description of algorithm in DART for test case generation and we give some illustration

using examples. Finally, we conclude with advantages and limitations of this tool.

Introduction It blends dynamic test generation with model checking techniques with the goal

of systematically executing all feasible program paths of a program while detecting some specific

statement (error). DART addresses does the following things as desribed in [7].

1. “Automated extraction of the interface of a program with its external environment using static

source-code parsing

2. Automatic generation of a test driver for this interface that performs random testing to simulate

the most general environment the program can operate in and

3. Dynamic analysis of how the program behaves under random testing and automatic generation

of new test inputs to direct systematically the execution along alternative program paths.”

Steps: DART uses technique of dynamic test generation as follows

1. In the initial iteration, program is executed with random inputs and later by directed inputs.

2. Performs the symbolic execution along the path governed by program execution and gathers

symbolic constraints on inputs.

3. Uses a constraint solver to infer variants of the previous inputs to drive the programs next

execution toward an alternative program branch.

This process is repeated until a specific program statement (error) is reached. whenever symbolic

execution doesnt know how to generate a constraint for a program statement depending on some

inputs, that constraint will be simplified using inputs concrete (execution) values at that point of

execution.

15

3.4.1 Algorithm

The following algorithm gives an overview of exact algorithm in DART [7].

Algorithm 1 Dynamic Automated Random Testing

Require: Input program P
1: Instrument the program P
2: repeat

3: Initialize the stack for constraints
4: Do random initialization of inputs to P
5: while directed search is not completed do

6: Let s be first line in DART instrumented program P
7: while s /∈ { abort, halt } do

8: if s is an assignment statement (m → e) then
9: Update Sm by symbolic value of e

10: Update s by next statement in P
11: end if

12: if s is conditional statement (if e goto l) then

13: Let sym, conc be symbolic and concrete value of e
14: if value of conc is true, then push the sym onto stack and update s by l
15: else push negation of sym onto stack and update s by next statement in P
16: end if

17: end while

18: if s is halt then

19: solve the path constraints, get next directed inputs
20: end if

21: if s is abort then

22: raise an exception and break
23: end if

24: end while

25: until All constraints are in scope of constraint solver

Illustration: DARTs integration of random testing and directed search using symbolic reasoning

is best explained with the following example.

int f(int x) {

return 2 * x;

}

int h(int x, int y) {

if (x != y)

if (f(x) == x + 10)

error;

}

In the above code snippet, the function h is defective because it may lead to an error statement for

some input. The following iterations illustrate the working of algorithm in DART.

1. DART instruments the program. It mean, extra code will be added to program to perform

symbolic execution.

2. Assume, Sx and Sy are the symbolic notations for the variables x and y.

16

3. Iteration 1:

� Let the randomly chose value of x and y be 43 and 21. The program execution on those

inputs follows the then branch of first conditional statement and else branch of second

conditional statement.

� After performing symbolic execution along path guided by concrete program execution,

path condition corresponding to the path is (Sx != Sy) and (2 × Sx != Sx + 10).

� Last constraint in above path condition is negated to drive the newer inputs towards

another path.

� After solving them by constraint solver, the feasible inputs are 10 and 21.

4. Iteration 2::

� The directed input values of x and y from previous iteration are 10 and 21. The program

execution on those inputs follows the then branch of first conditional statement and then

branch of second conditional statement.

� The path condition, after performing symbolic execution, is (Sx != Sy) and (2 × Sx =

Sx + 10).

� The program execution along this path reaches the error statement and DART gets ter-

minated.

5. Finally, DART generates an input (10,21) for which program execution reaches error statement.

3.4.2 Advantages

DART has several advantages in comparison to static test generation. In this sub section, we explain

the advantages of DART in comparison to static test case generation using symbolic execution by

considering the following example [7].

Example 1:

struct foo { int i; char c; }

bar (struct foo *a) {

if (a->c == 0) {

*((char *)a + sizeof(int)) = 1;

if (a->c != 0) abort();

}

}

DART treats the input pointer to bar function as a symbolic variable. In beginning, DART randomly

initializes it to NULL or to single allocated cell of appropriate type. Static analysis tools including

alias analysis may not guarantee that a→ c has been overwritten. But, DART finds an execution

leading to abort easily by simply generating an input satisfying the linear constraint (a→c = 0).

17

Example 2: DART alleviates the imprecision aroused due to symbolic execution using run time

information. Consider the following example [7] where constraint solver cannot handle the con-

straints.

foobar(int x, int y){

if (x*x*x > 0) abort();

}

Suppose that constraint solver cannot handle nonlinear arithmetic constraints. If the constraints

are out of scope of constraint solver, then constrains will be simplified using run time information.

In the above example, DART generate an input which leads to abort statement where as symbolic

execution will be struck in solving the constraint.

Limitations:

1. Since concrete values are used to simplify constraints whenever symbolic execution is not

possible, DART effectiveness critically depends on the symbolic reasoning capability available.

2. Systematically exploring all feasible program paths, in a program having multiple function

calls, is typically expensive for large programs. This problem is considered as path explosion

problem.

3.5 Extensions of DART

In this section, we discuss extensions of DART to alleviate the limitations of DART. We begin with

description of each problem and an algorithm to solve the problem.

Problem 1 - Constraints Limitations: Replacing of constraints, that are out of scope of con-

straints solver, by run time information of corresponding variable has advantages and are explained

in earlier sections. But there are some problems associated with this replacement. It cannot assure

100% path coverage. It may result in missing some bugs.

The typical cases where constraint solver cannot solve constraints are non linear arithmetic

constraints, pointer constraints, array/memory references, bit vector operations. DART proposed

a simple strategy to generate random memory graphs where each pointer is either NULL or points

to a new memory cell whose nodes are recursively initialized. This strategy suffers from several

deficiencies [8] and are explained as follows.

1. “The random generation of list of nodes may not terminate .

2. The random generation produces only trees for list of nodes. For example, it cannot produce

a cyclic list.

3. The directed generation does not keep track of any constraints on pointers”.

18

3.5.1 Concolic Unit Testing

In this extension, we discuss the solution for constraints limitation. This solution is just an approx-

imate solution towards the problem. This solution has been implemented in a tool called Concolic

Unit Testing (CUTE) [8].

Idea: The key idea is to represent inputs using a logical input map that represents all inputs,

including (finite) memory graphs, as a collection of scalar symbolic variables and then to build

constraints on these inputs by symbolically executing the code under test. We will illustrate the

idea using the following example.

Illustration:

typedef struct cell {

int v; struct cell *next;

} cell;

int f(int v) { return 2*v + 1; }

int testme(cell *p, int x) {

if (x > 0)

if (p != NULL)

if (f(x) == p->v)

if (p->next == p) error;

return 0;

}

The function testme is defective because it may lead to an error statement for some value of its

input vector, which consists of the input parameters p pointer to cell and x an integer variable.

1. CUTE instruments the program for getting symbolic constraints.

2. Let P0 and X0 be symbolic variables for p and x.

3. Iteration 1

� Let the randomly chosen value of P0 and X0 be NULL and 10. With these inputs,

program execution follows the then branch of first if condition and else branch of second

if condition.

� After performing the symbolic execution over the path followed by program execution,

path condition is (X0 > 0) and (P0 = NULL)

� Last constraint in above path condition is negated to drive the newer inputs towards

another path. After solving them by constraint solver, the feasible inputs are 10 and a

single allocated cell.

19

4. Iteration 2:

� The logical input map is a sequence of memory graphs and scalar symbolic variables. For

the above example, the logical input map is 〈 P0, P0 → v, P0 → next, X0〉, where P0,

P0 → v, P0 → next, X0 are symbolic variables.

� Directed input from previous iteration to logical input map is

〈 pointer to cell, 30, NULL, 10〉

� Path condition after executing program on the above inputs is

(X0 > 0) & (P0 != NULL) & (f(x) != P0 → v)

� Last constraint in above path condition is negated to drive the newer inputs towards

another path. After solving them by constraint solver, the directed input is

〈 pointer to cell, 21 , NULL , 10 〉.

5. Iteration 3:

� The logical input map is 〈 P0, P0 → v, P0 → next, X0〉, where P0, P0 → v, P0 → next,

X0 are symbolic variables.

� Directed input from previous iteration to logical input map is

〈 pointer to cell, 21 , NULL , 10 〉.

� Path condition after executing program on the above inputs is

(X0 > 0) & (P0 != NULL) & (f(x) == P0 → v) and (P0 → next != P0).

� Last constraint in above path condition is negated to drive the newer inputs towards

another path. After solving them by constraint solver, the feasible inputs are 〈 pointer

to cell, 21 , pointer to same cell , 10 〉.

6. Iteration 4:

� The logical input map is 〈 P0, P0 → v, P0 → next, X0〉, where P0, P0 → v, P0 → next,

X0 are symbolic variables.

� Directed input from previous iteration to logical input map is

〈 pointer to cell, 21 , pointer to same cell , 10 〉.

� Program execution on above inputs reaches the error statement.

7. Finally, CUTE generates an input 〈 pointer to cell, 21 , pointer to same cell , 10 〉 which makes

execution to reach error statement.

Problem 2 - Path explosion: Systematically exploring all feasible program path, in a program

having multiple function calls, is typically expensive for large programs. This problem is known as

path explosion problem.

The idea to solve the above problem is to perform dynamic test case generation com-positionally

(notion of summaries) using techniques for inter procedural static analysis that have been used to

make static analysis scalable to very large programs.

20

3.5.2 Systematic Modular Automated Random Testing

In this sub section, we discuss another extension for DART to solve the problem of path explo-

sion. Systematic Modular Automated Random Testing (SMART) [9] extends DART by by encoding

test results as function summaries and reusing those summaries for later re-use. These function

summaries are expressed using input preconditions and output post conditions. For a fixed reason-

ing capability of constraint solver, compositional approach to dynamic test generation (SMART) is

both sound and complete compared to monolithic dynamic test generation (DART). In other words,

SMART can perform dynamic test generation compositionally without any reduction in program

path coverage.

Function summary: A function summary φf for a function f is defined as a formula of propo-

sitional logic whose propositions are constraints that can be solvable by constraint solver . It is

defined as a disjunction of formulas φw of the form (prew =⇒ postw) where prew is a conjunction

of constraints on the inputs of f while postw is a conjunction of constraints on the outputs of f. φw

can be computed from path constraint corresponding to the execution path. We use the following

example to illustrate the working of SMART [9].

Illustration:

int foo(int x, int y) {

if (y != 0)

if (x > 10)

error;

return 0;

}

int main(int a) {

int b;

if(a > 20)

b = 0 ;

return foo(a-1, b);

else

b = 1;

return foo(a+1, b);

return 0;

}

The following iterations illustrate the working of algorithm in SMART.

� Iteration 1

1. Let the randomly chosen value of a be 30. The program execution on this input follows

then branch of if condition.

2. Since there are no summaries associated with function foo, SMART starts analyzing the

function foo.

21

3. The summary will be calculated using directed search over same function with the given

context.

4. The summary calculated is (y 6= 0 & x > 10) =⇒ false and

(y == 0) =⇒ 0 and (y 6= 0 & x ≤ 10) =⇒ 0

5. The path condition is (a > 20) and input to constraint solver is ¬ (a > 20).

6. After solving them by constraint solver, the feasible inputs is 15.

� Iteration 2

1. The directed input value of x from previous iteration is 15. The program execution on

this input follows else branch of if condition.

2. Since there exist summary for function foo which is suitable to current situation, SMART

will use the summary.

3. Using the summary, SMART comes to conclusion that foo (15, 1) reaches abort statement

as follows.

4. Given x = 15 and y = 1, (y 6= 0 & x > 10) =⇒ false will be satisfied.

� Finally, SMART generates an input x = 15 for which program execution reaches error state-

ment.

22

Chapter 4

Synergy

This chapter describes an algorithm, called Synergy [15], a new verification algorithm for check-

ing safety properties of sequential programs. Typically, assertions will be used to represent safety

properties of programs. Checking safety properties of a program is equivalent to assertion checking

problem. Synergy is aimed at either finding a test case that violates the assertion or finding a finite-

indexed abstraction that proves that assertion is not violated by any test case. Generally, execution

based tools like DART, SMART aim at finding bugs and proof based tools like SLAM, BLAST find

proofs. But execution tools may also find proofs only at the expensive search of all possible test

cases. Similarly proof based tools may also find bugs only at the expensive refinements. But Synergy

searches for bugs and proof simultaneously and uses the information obtained in searching one to

others.

4.1 Motivation and Introduction

As discussed in last chapter, DART starts with a random inputs and move towards an input whose

execution path leads to error. The reason for starting with random inputs is, the path from input to

error state is not known. But the path can be known from abstraction of control flow of program.

If there exists an error path from abstraction, that error path may not be feasible since it is an

abstraction. So, there exist spurious paths in abstraction. But spurious paths can be removed by

partitioning the states along the execution path of counter examples. This refinements will be done

until the error path is feasible or there is no error path from abstraction. If abstraction doesn’t have

a path to error region, then concrete program will not have the test case that leads to error region.

But if abstraction does have path to error region, then concrete program may or may not have test

case that leads to error region. Synergy combines this idea of guiding the refinements by counter

test cases and guiding the path to error region using error trace from abstraction. Thus Synergy

combines testing and verification for checking the assertion in a sequential programs.

Synergy is a verification algorithm which searches simultaneously for bugs and proof. It tries

to put the information obtained in one search to the best possible use in the other search. The

search for bugs is guided by the proof under construction, and the search for proof is guided by the

program executions that have already been performed. Synergy, thus, is a combination of under

23

approximate and over approximate reasoning. Program executions on concrete inputs produces

a precise under approximation of the reachability tree of the program, and partition refinement

produces a successively more precise over approximation. As mentioned in motivation, Synergy

guides testing towards errors using abstract error traces and guides refinement using test information.

Refinement is helpful when there are number of branching statements and Testing is helpful when

there are loop statements. Typically, program contains both kind of statements. So, simultaneous

testing and verification performs better than independent use of both execution-based and proof-

based tools.

4.2 Synergy Algorithm

The Synergy algorithm is explained in the current section. The back ground needed for the algorithm

is explained in the following.

4.2.1 Definitions

� Abstract error trace: The path from the initial node to error node in abstraction is called

as abstract error trace and is represented by τ .

� Concrete error trace: The path from initial node to error node in concrete program where

assertion gets violated is called as concrete error trace.

� Frontier: The unvisited node by concrete execution in an abstract error trace is known as

frontier.

� Forest: Synergy maintains Forest F for under approximate reasoning. This forest F contains

the collection of test cases that Synergy performs on program P. Each path in forest F corre-

sponds to an concrete execution trace of program P. When ever a path that leading to an error

location is added, then a test case has been found which can acts as a witness to violation of

assertion.

� Abstraction: Synergy maintains relational abstraction A for over approximate reasoning.

This abstraction contains set of states and edges connected to states as per program. But

there might not exists an equivalent concrete trace for a given abstract trace. Each state

is an equivalence class of concrete program states. If there exists a concrete edge between

any concrete state in an abstract state to any concrete state in another abstract state, then

there will be an abstract edge/transition between those abstract states. When ever there is

no abstract error trace in abstraction A, then proof has been found which acts as a witness to

say that assertion cannot be violated any test input.

24

4.2.2 Algorithm

The overview of Synergy algorithm is explained as following. It is the compact description of

algorithm given in paper.

The algorithm takes 1) Program P and 2) Assertion ψ as inputs and produces the following

output.

1. It may output “fail” together with a test case that generates concrete error trace to ψ.

2. It may output “proof” together with a finite-indexed partition proving that program P will

not reach ψ

3. It may not terminate

Algorithm 2 Synergy

Require: Input program P = 〈Σ, σI ,→〉, Assertion ψ
1: Assumes: σI ∩ ψ = empty
2: F = empty
3: Σ≃ = {σI , ψ,Σ \ σI ∪ ψ}
4: loop

5: if there is any concrete path ’t’ in forest F to reach error then

6: return (“Fail”, t) where t is a concrete error trace to ψ
7: end if

8: Construct an abstract program A = 〈Σ≃, σ
I
≃
,→≃〉 using P and ≃

9: Get the abstract trace τ from abstract program A to assertion ψ
10: if abstract trace τ is empty then

11: return (“Pass”, Σ≃) where Σ≃ is a finite indexed partition
12: end if

13: Get the ordered abstract error trace τerr from abstract trace τ
14: Obtain the position of frontier k from τerr and Forest f
15: Get the constraints φ by executing symbolically up to frontier
16: Generate the suitable test input to extend the frontier by solving the constraints φ
17: if the frontier is extend-able from Sk to atleast Sk+1 along τerr then

18: Execute the program P on that test input
19: Add the resultant concrete trace to forest F
20: else

21: Refine the abstract state Sk−1 using the preimage operator as follows.
22: ρ = Pre(Sk) = {s ∈ Σ|∃s1 ∈ Sk.s→ s1}
23: Σ≃ = (Σ≃ \ Sk−1) ∪ {Sk−1 ∩ ρ), Sk−1 \ ρ)}
24: end if

25: end loop

26: return (“Fail”, an error trace, from forest F, that satisfies σI and reaches ψ ;) or
(“Pass”, finite indexed abstraction Σ≃, proves that ψ cannot be reached by any input that
satisfies σI)

4.3 Examples

In this section, algorithm is illustrated with examples. The algorithm over these examples resulting

in either finding a test case to violate an assertion or finding a proof to always satisfy an assertion

or non terminating.

25

4.3.1 Synergy results in finding Proof

Figure 4.1: Example on which Synergy results in proof

Fig 4.1 contain the program and its abstraction. Synergy is able to prove the property by

discovering three predicates (a ≥ N), (i ≥ N) and (false) in three refinement steps. Synergy starts

with the initial partition {{ pc = i } | 0 ≤ i ≤ 6 }, and the initial abstract program is isomorphic to

the concrete programs control flow graph.

1. Iteration 1: Since forest F doesn’t contain a path that leads to error state, there is no witness

to error. There is no proof since abstraction A contains an abstract error trace { 0, 1, 2, 3, 4 }

and frontier is 0. Then Synergy extend the frontier from 0 to 1 by giving an input to program

as n = 2. It results in adding concrete path { 0, (1, 2, 3, 5) 2, 1, 6 } to Forest F.

2. Iteration 2: There is no witness and proof. Abstract A contains an abstract error trace { 0,

1, 2, 3, 5, 1, 2, 3, 4 } and the frontier is 4. But Synergy couldn’t extend the frontier from 3

to 4 because of infeasible constraints from 0 to frontier. So, Synergy uses this information to

refine the state 3 using the pre image operator applying on edge from 3 to 4 ans state 4. Now

Synergy splits the state 3 into 3∧ P and 3∧¬P where P = (a ≥ N).

3. Iteration 3: There is no witness and proof. Abstraction A contains an abstract error trace

{ 0, 1, 2, 3∧P, 4 } and frontier is 3∧P. But synergy couldn’t extend the frontier from 2 to

3∧P. So, Synergy uses this un ability of extension and refines the state 2 into 2∧Q and 2∧¬Q

where Q = (i ≥ N). Now, Synergy uses theorem prover after refinement for maintaining

abstraction. It concludes that 2∧Q is not reachable from 1. This is because, in order to en-

ter loop, i < N should be satified. But Q is i ≥ N. So, Synergy removes the edge from 1 to 2∧Q.

4. Iteration 4: There is no witness. But there is no abstract error path from state 0 to error

state. This abstraction acts as proof for saying that the assertion will not be violated by any

test case.

26

4.3.2 Synergy results in finding test case

Figure 4.2: Example on which Synergy results in test case

Fig 4.2 contains the program and its abstraction. Synergy is able to find a test case by moving

through at least one step towards error region. Synergy starts with the initial partition {{ pc = i }

| 0 ≤ i ≤ 6 }, and the initial abstract program is isomorphic to the concrete programs control flow

graph.

1. Iteration 1: Since forest F doesn’t contain a path that leads to error state, there is no witness

to error. There is no proof since Abstraction A contains an abstract error trace { 0, 1, 2, 3, 4,

5} and frontier is 0. Then Synergy extend the path from 0 to 1 by giving an input to program

as a = 10. It results in adding concrete path { 0, 1, 2, 6 } to Forest F.

2. Iteration 2: There is no witness from forest F. There is no proof since abstraction A contains

an abstract error trace { 0, 1, 2, 3, 4, 5} and Frontier is 3. Then Synergy extend the path

from 2 to 3 by collecting and solving the constraints from 0 to 3. The constraints are (a >

3 and a < 6). Then constraint solver solves above constraints and generate an input a = 4.

Synergy will run the program by giving a = 4 as input. It results in adding concrete path { 0,

1, 2, 3, 4, 6 } to Forest F.

3. Iteration 3: There is no witness from forest F. There is no proof since abstraction A contains

an abstract error trace { 0, 1, 2, 3, 4, 5} and Frontier is 5. Then Synergy extend the path

from 4 to 5 by collecting and solving the constraints from 0 to 5. The constraints are (a > 3

and a < 6 and a = 5). Then constraint solver solves above constraints and generate an input

a = 5. Synergy will run the program by giving a = 5 as input. It results in adding concrete

path { 0, 1, 2, 3, 4, 5 } to Forest F.

4. Iteration 4: Now, there is a witness from Forest F which contains the path from 0 to error

state. The test case corresponding to the path is 5. Synergy could find an input a = 5 which

violates the assertion.

27

4.3.3 Synergy results in non terminating

Figure 4.3: Example on which Synergy results in non termination

Fig 4.3 contains the program and its abstraction. Synergy tries to find either a test case or proof.

But verification is undecidable problem. Unfortunately, Synergy doesn’t terminate on this example.

Synergy starts with the initial partition {{ pc = i } | 0 ≤ i ≤ 6 }, and the initial abstract program

is isomorphic to the concrete programs control flow graph.

1. Iteration 1: There is no witness from forest F. There is no proof since abstraction A contains

an abstract error trace { 1, 2, 3, 5} and frontier is 1. Then Synergy extend the path from

1 to 2. Unfortunately this program is a non terminating. So synergy will stop this program

execution after some time. It results in adding concrete path { 1, 2, (3, 4) k} where k is some

constant to Forest F.

2. Iteration 2: There is no witness from forest F. There is no proof since abstraction A contains

an abstract error trace { 1, 2, (3, 4)k, 5} and frontier is 4 . Then Synergy extend the path

from 3 to 4 by collecting and solving the constraints from 1 to 3. The constraints are (a >

3 and a < 6). Then constraint solver solves above constraints and generate an input a = 4.

Synergy will run the program by giving a = 4 as input. It results in adding concrete path { 0,

1, 2, 3, 4, 6 } to Forest F.

3. Iteration 3: Similar to iteration 2.

4.4 Conclusion

Synergy is a new algorithm that has combined the directed testing and abstraction refinement based

techniques in a novel manner. This has alleviated the problems due to limitations of independent

use of testing and verification. This has made a new approach that made testing and verification

as dependable for the problem of assertion checking in sequential programs. But this approach has

some limitations. It has made use of constraint solver for both directed testing and maintaining

abstraction at each iteration of algorithm. Since use of constraint solver is expensive in terms of

time, this algorithm can be improved to run in less time as compared to original algorithm. Along

with expensive use of constraint solver, synergy doesn’t handle arrays, pointers and inter procedure

calls.

28

Chapter 5

DASH

DASH [16] is a verification algorithm, an extension of Synergy algorithm. This algorithm is used to

check whether program P satisfies an assertion ψ. It alleviated the problem of using constraint solver

for maintaining abstraction. It uses only test generation operations and it refines, and maintains

abstraction only as a consequence of failed test case generation. Unlike Synergy, DASH handles

pointers and inter procedural calls. This chapter describes the DASH algorithm and it’s working on

examples.

5.1 Motivation and Introduction

As discussed in last chapter, Synergy combines testing and verification in a way that information

obtained in search for proof is put in tests and vice-versa. The Synergy algorithm works by iteratively

refining the tests and the abstraction, using the abstraction to guide generation of new tests and

using the tests to guide where to refine the abstraction. But Synergy uses constraint solver for

maintaining abstraction along with test case generations that is an expensive work. DASH handles

inter procedural call by recursively invocations. Generally, pointers can be handled using pointer

alias analysis. Global pointer alias analysis, path sensitive alias analysis and path independent alias

analysis are normally used for pointer alias analysis. Refinement can be done using strongest post

condition or weakest precondition. But Synergy uses weakest precondition. Unfortunately, using

weakest precondition for refinements in case of pointers results in explosion of predicates. On other

hand, if strongest post condition is used for refinement, then it may require many iterations to find

the strongest post condition or some times it results in non termination in calculation of strongest

post condition. So, DASH introduces a new operator called WPα which considers only possible

pointer aliases along concrete execution paths. This operator is stronger that weakest precondition

but weaker than strongest post condition.

29

5.2 DASH Algorithm

The overview of DASH algorithm is explained as following. It is the compact description of algorithm

given in paper. This section also gives sketch of DASH algorithm.

5.2.1 Description of algorithm

The algorithm takes 1) Program P and 2) Assertion ψ as inputs and produces the following output.

1. It may output “fail” together with a test case that generates concrete error trace to ψ.

2. It may output “proof” together with a finite-indexed partition proving that program P will

not reach ψ

3. It may not terminate

5.2.2 Sketch of DASH

Figure 5.1: Sketch of DASH

30

Algorithm 3 DASH

Require: Input program P = 〈Σ, σI ,→〉, Assertion ψ
1: Assumes: σI ∩ ψ = empty
2: F = empty
3: Σ≃ = {σI , ψ,Σ \ σI ∪ ψ}
4: loop

5: if there is any concrete path ’t’ in forest F to reach error then

6: return (“Fail”, t) where t is a concrete error trace to ψ
7: end if

8: Construct an abstract program A = 〈Σ≃, σ
I
≃
,→≃〉 using P and ≃

9: Get the abstract trace τ from abstract program A to assertion ψ
10: if abstract trace τ is empty then

11: return (“Pass”, Σ≃) where Σ≃ is a finite indexed partition
12: end if

13: Get the ordered abstract error trace τerr from abstract trace τ
14: Obtain the position of frontier k from τerr and Forest f
15: Get the constraints φ by executing symbolically up to frontier
16: if frontier is a function call to procedure Q then

17: Get the post condition ψ’ = Sk [e/x], where e is the returned expression in Q and x is the
variable in the caller P that stores the return value

18: Invoke DASH with 〈Σ, σI ∧ φ,→〉, Assertion ¬ψ′

19: else

20: Generate the suitable test input to extend the frontier by solving the constraints φ
21: end if

22: if the frontier is extendable from Sk to at least Sk+1 along τerr then

23: Execute the program P on that test input
24: Add the resultant concrete trace to forest F
25: else

26: Refine the abstract state Sk−1 using the preimage operator as follows.
27:

WP ↓ (op, ψ) = α ∧WP (op, ψ)

ρ =WPα(op, ψ) = ¬(α ∨WP ↓ (op, ψ))

28: States in abstraction are modified as follows.

Σ≃ = (Σ≃ \ Sk−1) ∪ {Sk−1 ∩ ρ), Sk−1 \ ρ)}

29: Edges in abstraction are modified as follows.

→≃ = (→≃ \{(S, Sk−1)|S ∈ Parents(Sk−1)})

\{(Sk−1, S)|S ∈ (Children(Sk−1))}

→≃ = →≃ ∪{(S, Sk−1 ∧ ρ)|S ∈ Parents(Sk−1)} ∪

{(S, Sk−1 ∧ ¬ρ)|S ∈ Parents(Sk−1)} ∪

{(Sk−1 ∧ ρ, S)|S ∈ (Children(Sk−1))} ∪

{(Sk−1 ∧ ¬ρ, S)|S ∈ (Children(Sk−1)) \ {Sk}}

30: end if

31: end loop

32: return (“Fail”, an error trace, from forest F, that satisfies σI and reaches ψ ;) or
(“Pass”, finite indexed abstraction Σ≃, proves that ψ cannot be reached by any input that
satisfies σI)

31

5.3 Handling Pointers

This section describes way of handling the pointer by DASH algorithm. This has been illustrated

through example.

5.3.1 Description

Generally programs containing pointers is difficult to reason and analyze because computing the

aliases precisely is very difficult and computationally expensive. Typically whole program may alias

analysis is used to improve the precision of weakest precondition. The outcome of this analysis largely

influences program analysis tools. Typically whole may program alias analysis is over approximate

because it captures the aliases that may possibly happen in the program. There may exist a element

in aliases in set that doesn’t alias in any of the program execution.

Since whole program may alias analysis is over approximate, the weakest precondition computed

will contain exponential disjunctions of predicates.

WP (i = j,∗ a+∗ b < 10) = {a 6= &i ∧ b 6= &i ∧∗ a+∗ b < 10} ∨

{a = &i ∧ b 6= &i ∧ j +∗ b < 10} ∨

{a 6= &i ∧ b = &i ∧∗ a+ j < 10} ∨

{a = &i ∧ b = &i ∧ 2× j < 10}

Consider the above example. The variable i may be aliases with two variables (a, b). If there are

n possible aliases obtained from whole program may alias analysis, then there will be 2n disjunctions

of predicates in weakest precondition which is explosion and is difficult to handle. DASH algorithm

takes an alternate approach by considering only the aliasing conditions that can happen along the

current abstract trace, and computes the weakest precondition specialized to that aliasing condition.

Let α be the set of aliasing conditions that can happen along current abstract trace.

WP ↓ (op, ψ) = α ∧WP (op, ψ)

WPα(op, ψ) = ¬(α ∨WP ↓ (op, ψ))

Consider the same above example where the aliasing condition that has happened along current

abstract trace is (b 6= & i). Then WPα operator applying on edge (i = j) and post condition as (
∗ a + ∗ b < 10) is equal to (a = & i ∧ b 6= &i ∧ j + ∗ b < 10) and remaining 7 disjunctions comes

to ¬WPα which reduces the burden of having explosion of disjunctions of predicates.

32

5.3.2 Example

Figure 5.2: Example on which DASH results in proof

Fig 5.2 contains the program and its abstraction. DASH is able to prove the property by dis-

covering the predicates (∗p1 == 1 ∨ ∗p2 == 1), ((∗p == p1 & ∗p == p2) ∨ ∗p1 == 1 ∨ ∗p2

== 1) ,((∗p == p1 & ∗p == p2)) and (false) in four refinement steps. DASH starts with the initial

partition {{ pc = i } | 0 ≤ i ≤ 8 }, and the initial abstract program is isomorphic to the concrete

programs control flow graph.

1. Iteration1: There is no witness since forest F doesn’t contain a path that leads to error state.

Along, there is no proof since Abstraction A contains an abstract error trace { 0, 1, 2, 3, 4,

5 } and Frontier is 0. Then DASH extend one transition from 0 to 1 beyond the frontier by

giving feasible inputs. It results in adding concrete path { 0, 1, 2, 3, 4, 6, 7, 8} to Forest F.

2. Iteration2: There is no witness and proof. Abstract A contains an abstract error trace { 0, 1,

2, 3, 4, 5} and the frontier is 5. But DASH couldn’t make a transition at least one step from

4 to 5 beyond frontier because of infeasible constraints from 0 to frontier. So, DASH uses this

information to refine the state 4 using the WPα operator applying on edge from 3 to 4 and on

state 4. Now DASH splits the state 3 into 3∧ P and 3∧¬P where P = (∗p1 == 1 ∨ ∗p2 ==

1).

3. Iteration3: There is no witness and proof. Abstraction A contains an abstract error trace {

0, 1, 2, 3, 4∧P, 5 } and frontier is 4∧P. But DASH couldn’t make a transition from 2 to 3∧P

at least one step beyond frontier. So, DASH uses this inability of extension and refines the

state 3 into 3∧Q and 3∧¬Q where Q = ((∗p == p1 & ∗p == p2) ∨ ∗p1 == 1 ∨ ∗p2 == 1).

4. Iteration4: There is no witness and proof. Abstraction A contains an abstract error trace {

0, 1, 2, 3∧Q, 4∧P, 5 } and frontier is 3∧Q. But DASH couldn’t make a transition from 2 to

3∧Q at least one step beyond frontier. So, DASH uses this information and refines the state

2 into 2∧R and 2∧¬R where R = (∗p == p1 & ∗p == p2).

33

5. Iteration5:There is no witness and proof. Abstraction A contains an abstract error trace {

0, 1, 2∧R, 3∧Q, 4∧P, 5 } and frontier is 2∧R. But DASH couldn’t make a transition from 1 to

2∧R at least one step beyond frontier. So, DASH uses this information and refines the state 1

into 1∧S and 1∧¬S where S = (false) and state 1∧S and its transitions will be removed from

abstraction since it is a false state.

6. Iteration6: There is no witness. But there is no abstract error path from state 0 to error

state. This abstraction acts as proof for saying that the assertion will not be violated by any

test case.

Figure 5.3: Finite indexed abstraction

34

5.4 Handling Inter procedure calls

This section describes way of handling inter procedure calls by DASH algorithm. This has been

illustrated through example.

5.4.1 Description

Without loss of generality, assume that property ψ that we wish to check is only associated with

the main procedure P0. DASH maintains abstraction A and Forest F for each procedure. The main

difference between intra procedural and inter procedural analysis occurs only if the frontier that is

going to be extended is a function call. Informally, the inter procedural algorithm works by recur-

sively invoking DASH whenever the standard algorithm dictates that the frontier must be extended

across a call-return edge of the graph. The results of recursive call, combined with information from

the calling context tell us whether or not there exists a test that can extend the frontier. If this is not

possible, then the proof returned by the recursive DASH call is used to compute a suitable predicate.

The another notable change in handling inter procedural calls is handling the function calls be-

tween initial state to frontier. Essentially, the abstract error trace with all call-return edges up to

its frontier replaced with the abstract trace traversed in the called function (and this works in a

recursive manner), so that it is really a trace of every abstract program point through which the

test passed. If any edge in between initial state to frontier is a function call, then DASH runs a test,

that satisfies the pre condition, on function and replaces that function call edge by the sequence of

states visited by that test. In order to extend the frontier, symbolic execution will be carried on the

trace whose function calls are replaced by sequence of states visited by those tests.

Formally, when the frontier is a function call, then DASH will itself recursively invoked with the

following parameters. The constraints on function caller inputs variables are the conditions obtained

by symbolic execution until frontier. These acts as initial conditions on inputs of caller function. The

assertion that would be checked will be the negation of same assertion but the returned expression

in caller function replaces the variable in the caller that stores the return value.

If recursive call to DASH return the fail answer, then it indicates that such a test is feasible and

results in extension of the frontier which is a function call. If recursive call to DASH returns the

true answer, then it indicates that such a test is not feasible and results in refinement of the region

before frontier according to the following predicate.

Suitable predicate = ¬(∨ρi)

where ρi is a predicate in proof to split the initial region.

35

5.4.2 Example

Figure 5.4: Example on which DASH handles inter procedural calls

Fig 5.4 contains the program and its abstraction. DASH is able to prove the property by discov-

ering the predicates (b 6= x + 2), (a 6= x + 1), (false) in three refinement steps. Initially DASH

creates abstractions Atop, Ainc for both procedures ’top’ and ’inc’. Then DASH creates empty forests

Ftop, Finc to both procedures.

1. Iteration 1: There is no witness since forest Ftop doesn’t contain a path that leads to error

state. Along, there is no proof since Abstraction Atop contains an abstract error trace { 0, 1,

2, 3 } and Frontier is 0. Then DASH extend one transition from 0 to 1 beyond the frontier by

giving feasible inputs as x = 10. It results in adding concrete path { 0, 1, 2, 4 } to Forest Ftop.

2. Iteration 2: There is no witness and proof. Abstract Atop contains an abstract error trace {

0, 1, 2, 3} and the frontier is 3. But DASH couldn’t make a transition at least one step from

2 to 3 beyond frontier because of infeasible constraints from 0 to frontier. So, DASH uses this

information to refine the state 2 using the WP operator applying on edge from 2 to 3 and on

state 3. Now DASH splits the state 3 into 3∧ P and 3∧¬P where P = (b 6= x + 2).

3. Iteration 3: There is no witness and proof. Abstraction Atop contains an abstract error trace

{ 0, 1, 2, 3 } and frontier is 3∧P. But DASH couldn’t make a transition from 2 to 3∧P at least

one step beyond frontier. So, DASH uses this inability of extension and tries to refines the

state 2. But DASH notices this as an inter procedural call and invokes itself as follows. Input

constraints: (a = x + 1, y = a), Assertion: (ret 6= x + 2), Procedure: (inc)

(a) Iteration 3.1: The return node in Ainc is split into 2∧P1 and 2∧¬ P1 where P1 = (ret

6= x + 2). There is no witness and proof. Abstraction Ainc contains an abstract error

trace { 0, 1∧P1 } and frontier is 1∧P1. But DASH couldn’t make transition at least one

step from 0 to 1∧P1 beyond frontier. So, DASH refines the state 1 into 1∧Q1 and 1∧¬Q1

where Q1 = (false) and state 1∧Q1 and its transitions are removed from abstraction Ainc.

36

(b) Iteration 3.2: There is no witness in forest. But there is no abstract error trace from

state 0 to error state. The abstraction acts as proof and return the suitable predicate to

refine as (y 6= x + 1).

Now DASH splits the state 2 into 1∧Q and 1∧¬Q where Q = (a 6= x + 1).

4. Iteration 4: There is no witness and proof. Abstraction Atop contains an abstract error trace

{ 0, 1∧Q, 2∧P, 3 } and frontier is 1∧Q. But DASH couldn’t make a transition from 0 to 1∧Q

at least one step beyond frontier. So, DASH uses this information and refines the state 0. But

DASH notices this an inter procedural call and invokes itself as follows. Input constraints:

true, Assertion: (a6= x + 1), procedure: top

(a) Iteration 4.1: DASH creates a new abstraction Ainc and Forest Finc for procedure ’inc’.

The return node in Ainc is split into 2∧P1 and 2∧¬ P1 where P1 = (ret 6= x + 1). There

is no witness and proof. Abstraction Ainc contains an abstract error trace { 0, 1∧P1 }

and frontier is 1∧P1. But DASH couldn’t make transition at least one step from 0 to

1∧P1 beyond frontier. So, DASH refines the state 1 into 1∧Q1 and 1∧¬Q1 where Q1 =

(false) and state 1∧Q1 and its transitions are removed from abstraction Ainc.

(b) Iteration 4.2: There is no witness in forest. But there is no abstract error trace from

state 0 to error state. The abstraction acts as proof and return the suitable predicate to

refine as (false).

Now DASH splits the state 0 into 0∧Q and 0∧¬Q where Q = (false) and state 0∧Q and it’s

transitions are removed from abstraction Atop.

5. Iteration 5: There is no witness. But there is no abstract error path from state 0 to error

state. This abstraction acts as proof for saying that the assertion will not be violated by any

test case.

Figure 5.5: Finite indexed abstraction

37

5.5 Conclusion

DASH is a verification algorithm, an extension of Synergy algorithm for checking the safety properties

of sequential programs. But DASH is handling only sequential programs. Currently, research work

is going to improve the DASH to support concurrent program analysis and liveness properties of

program. This algorithm is not scalable which is a hidden limitation. If there is are multiple

functional calls with similar arguments, then DASH will be recursively invoked for all those calls

which is a time consuming work. It handles constraints in only first order predicate logic. A progress

is going on in the direction of approximate symbolic execution to support more complex constraints.

38

Chapter 6

SMASH

Generally, may analysis provides information that is true of all program executions and is used to

prove absence of bugs and must analysis provides information that is true of some program execution

and is used to prove presence of bugs. SMASH [17] is 3 valued Compositional May-Must analysis

algorithm which computes may and must information at each procedure boundaries for later reuse.

It performs both may analysis and must analysis simultaneously, and uses both may summaries and

must summaries to improve the effectiveness as well as the efficiency of the analysis. It has been

implemented using predicate abstraction for may analysis and DART, symbolic execution for must

analysis.

6.1 Motivation and Introduction

DASH algorithm is introduced to handle the pointers and function calls in programs for analysis.

Scalability is an important feature of program analysis tools. Typically, DASH algorithm re invokes

itself for each function call to analyze the callee function with constraints on inputs and outputs

of the callee function. If a function call is repeatedly called with similar parameters , then DASH

will recursively called for all function calls even though if the function call is on similar parameters.

The basic motivation for introducing SMASH algorithm is to analyze the function call and save the

analysis in the form of summaries for later reuse. If the function is called with similar parameters

for next time, then summaries will be used without analyzing the function call once again by DASH.

The principle of SMASH algorithm is as follows [17]. “Compositional approaches to property

checking involve decomposing the whole-program analysis into several sub-analyses of individual

components, summarizing the results of these sub-analyses, and memorising (caching) those sum-

maries for possible later re-use in other calling contexts. Summarizing at procedure boundaries is

indispensable for scalability“.

39

6.2 Summaries

This section introduces the notion of summaries for storing the analysis computed over a function.

SMASH performs a modular inter procedural analysis and incrementally decomposes this reacha-

bility query into several sub-queries that are generated in a demand-driven manner. Each sub-query

is of the form of 〈φ1
?

=⇒ fφ2〉 , where φ1 and φ2 are state predicates representing respectively a

precondition (call- ing context) and postcondition (return context) for a procedure f (or block) in P .

The answer to such a query is yes if there exists an execution of f starting in some state σ1 ∈ φ1 and

terminat- ing in some state σ2 ∈ φ2 , no if such an execution does not exist, and unknown (maybe) if

the algorithm is unable to deci- sively conclude either way (the last option is needed since program

verification is undecidable in general). SMASH uses may and must summaries to answer queries.

6.2.1 May summary

A may summary of a procedure P is of the form 〈ϕ1

May
=⇒ Pϕ2〉 where ϕ1 and ϕ2 are predicates over

program may states.

Meaning: If we invoke procedure P from any state satisfying ϕ1 , the set of all possible states

of the program on termination of P is over-approximated by the set of states ϕ2 . This implies that

no states satisfying ¬ϕ2 are reachable from states satisfying ϕ1 by executing P.

Usage: Intuitively, a may summary of a procedure represents a property that is guaranteed

to be true about all executions of the procedure, and a must summary of a procedure represents

witness executions of the procedure that are guaranteed to exist. May summaries pro- vide obvious

benefits to improving the efficiency of may analy- sis: when a compositional may analysis requires

a sub-query for a procedure P , a previously-computed may summary for P can po- tentially be

re-used to answer that query without re-analyzing the procedure.

A may summary 〈ϕ1

May
=⇒ Pϕ2〉 implies that, for any state x ∈ ψ1 , for any state y such that the

execution of f starting in state x terminates in state y, we have y ∈ ψ2.

6.2.2 ¬ May summary

A not may summary of a procedure P is of the form 〈ϕ1

¬May
=⇒ Pϕ2〉 where ϕ1 and ϕ2 are predicates

over program may states.

Meaning: If we invoke procedure P from any state satisfying ϕ1 , the possible states of the

program on termination of P does not belong to the set of states ϕ2 . This implies that states

satisfying ¬ϕ2 are not reachable from states satisfying ϕ1 by executing P.

Usage: A not-may summary 〈ψ1

¬May
=⇒ fψ2〉 implies that for any state x ∈ ψ1 , there does not

exist a state y ∈ ψ2 such that the execution of f starting in state x terminates in state y. Clearly,

a not-may summary 〈ψ1

May
=⇒ fψ2〉 can be used to give a no answer to a query 〈ϕ1

May
=⇒ fϕ2〉 for f

provided that ϕ1 ⊆ ψ1 and ϕ2 ⊆ ψ2.

40

6.2.3 Must summary

A must summary of a procedure P is of the form 〈ϕ1

¬May
=⇒ Pϕ2〉 where ϕ1 and ϕ2 are predicates

over program may states.

Meaning: If we invoke procedure P from any state satisfying ϕ1 , the set of all possible states of

the program on termination of P is under-approximated by the set of states ϕ2 . This implies that

any state satisfying ϕ2 is guaranteed to be reachable from some state satisfying ϕ1 by executing P .

Usage: A must summary 〈ψ1
Must
=⇒ fψ2〉 implies that, for every state y ∈ ψ2 , there exists a

state x ∈ ψ1 such that the execution of f starting in state x ∈ ψ1 terminates in state y ∈ ψ2. Thus

a must summary 〈ψ1
Must
=⇒ fψ2〉 can be used to give a yes answer to a query 〈ϕ1

May
=⇒ fϕ2〉 provided

that ϕ1 ⊆ ψ1 and ϕ2 ∩ ψ2 = {}.

6.3 Differences between SMASH and DASH

There are two differences between SMASH and DASH and are aroused due to introduction of concept

of summaries. These two are explained as follows.

At first, the frontier, that is going to be extended, is a function call. DASH will be recursively

invoked to analyze the query even though there exists a similar query that has been analyzed by

DASH. But unlike DASH, when a query 〈ϕ1
?

=⇒ Pϕ2〉 is given over a function P, SMASH chooses

one of the following actions.

1. If there exist a previously computed ¬May summary 〈ϕ̂1

¬May
=⇒ Pϕ̂2〉 that answers the given

query, then SMASH will use this ¬May summary directly without analyzing the procedure P.

2. If there exist a previously computed must summary 〈ϕ̂1
must
=⇒ Pϕ̂2〉 that answers the given

query, then SMASH will use this must summary directly without analyzing the procedure P.

3. Otherwise, SMASH will analyze the procedure P and will make either ¬May summary or Must

summary to answer the given query.

Secondly, existence of function calls in between the initial state to state beyond the frontier. In

DASH, when ever there is a function call between initial state and state before frontier, DASH will

take an input that satisfies state predicate at function call and replaces the function call in abstract

error trace by sequence of states visited by function execution on that input. Where as in SMASH,

if there is any summary that helps for function call, SMASH uses for proceeding further in symbolic

execution from initial state to state beyond the frontier.

41

6.4 Illustration

In this section, we will explain the way of computing summaries and usage of it for other queries.

At first, we will illustrate SMASH algorithm over examples which computes ¬May, must summaries.

Secondly, we will illustrate SMASH algorithm over examples which uses ¬May / Must summary to

compute Must / ¬May summary respectively.

6.4.1 Computing ¬May summary

We consider the following example to show the computation of ¬May summary to prove that error

will not be reached by any inputs to main function.

void main(int i1,i2) { int g (int i) {

0: int x1,x2; 0: if (i > 0)

1: x1 = g(i1); 1: return i;

2: x2 = g(i2); else

3: if ((x1 < 0)||(x2 < 0)) 2: return -i;

4: error; }

5}

Initially, assume that there are no summaries associated with both functions. Now, SMASH tries

to find an execution in main function along the path 0, 1, 2, 3, 4 to reach error. Since the frontier

is edge from 3 to 4 and SMASH couldn’t extend the frontier, SMASH refines the state 3 in main

function to 3∧P, 3∧¬P and issues the following query to extend the new frontier from 2 to 3∧P.

〈true
?

=⇒g (retval < 0)〉 (6.1)

where retval denotes the return value of the function g. Since there are no summaries currently that

answers above query, SMASH starts analyzing the function g. Since all the paths in the function g

returns the non negative values, SMASH encodes this analysis in the form of ¬ May summary as

follows.

〈true
¬May
=⇒ g (retval < 0)〉 (6.2)

Then SMASH refines the state 2 in main to 2∧Q, 2∧¬Q and tries to extend the frontier from state

1 to state 2∧Q. Now, SMASH issues the following query to extend the frontier.

〈true
?

=⇒g (retval < 0)〉 (6.3)

At this point of time, SMASH is different from DASH because SMASH uses the existing ¬May

summary to answer the above query where as DASH analyzes the function g to answer the query.

So, SMASH uses the existing summary to refine the state 1 and proves that there exists non inputs

to function main which will make program execution to reach error and encodes this entire summary

over function main as follows.

〈true
¬May
=⇒ main (error)〉 (6.4)

42

6.4.2 Computing Must summary

We consider the following example to show the computation of must summary and finds an input

which will make program execution to reach error in main function.

void main(int i1,i2) { int g(int i) {

0: int x1,x2; 0: if (i > 0)

1: x1 = f(i1); 1: return i;

2: x2 = f(i2); else

3: if (x1 > 0 & x2 > 0) 2: return -1;

4: error; }

}

Initially, assume that there are no summaries associated with both functions. Now, SMASH tries

to find an execution in main function along the path 0, 1, 2, 3, 4 to reach error. Since the frontier

is edge from 3 to 4 and SMASH couldn’t extend the frontier, SMASH refines the state 3 in main

function to 3∧P, 3∧¬P and issues the following query to extend the new frontier from 2 to 3∧P.

〈true
?

=⇒g (retval > 0)〉 (6.5)

where retval denotes the return value of the function g. Since there are no summaries currently

that answers above query, SMASH starts analyzing the function g. The path through else branch

of function g doesn’t answer the query because the return value is -1 which is not greater than 0.

Since the path through if branch of function g satisfies the condition (retval > 0) and encodes this

analysis in the form of must summary as follows.

〈i > 0
Must
=⇒ g (retval > 0)〉 (6.6)

Since SMASH could extend the frontier from 2 to 3∧P, SMASH will try to extend the frontier from

3∧P to 4 for reaching error. So, SMASH tries to generate an input by doing symbolic execution from

0 to 3∧. At this point, SMASH is different from DASH. In DASH, when ever there is a function call

between initial state and state before frontier, DASH will take an input that satisfies state predicate

at function call and replaces the function call in abstract error trace by sequence of states visited

by function execution on that input. Where as in SMASH, if there is any summary that helps for

function call, SMASH uses, the intersection of state predicate at function call and pre condition of

summary, for proceeding further in symbolic execution.

Here also, SMASH uses the existing must summary at the edge from 1 to 2 and 2 to 3(function

calls) for symbolic execution and generates constraints (i1 > 0 & i2 > 0). Now, theorem prover

solves the constraints and generates the feasible inputs. Finally, program execution on those feasible

inputs leads to reaching error and can be encoded as following must summary for main function.

〈i1 > 0& i2 > 0
Must
=⇒ g (retval > 0)〉 (6.7)

43

6.4.3 Computing ¬May summary using Must summary

We consider the following example to show the computation of ¬May summary using must summary

and proves that error will not be reached by any inputs to main function.

void main (int i) { int g (int i) { int k (int i) {

0: int a = g(i); 0: int a = h(i); 0: if (i > 0)

1: if (a < 0) 1: if (a < 10) 1: return i;

2: error; 2: return k(a); else

3:} else 2: return -i; }

3: return 0;}

In above example, Let h be a complex function and hard to analyze. Assume that function h has

following must summaries.

〈i > 10
must
=⇒h (15 < retval < 20)〉 (6.8)

〈i < 14
must
=⇒h (retval < 11)〉 (6.9)

Now, SMASH tries to find an execution in main function along the path 0, 1, 2 to reach error. Since

the frontier is edge from 1 to 2 and SMASH couldn’t extend the frontier, SMASH refines the state

1 in main function to 1∧P, 1∧¬P and issues the following query to extend the new frontier from 0

to 1∧P.

〈true
?

=⇒g (retval < 0)〉 (6.10)

where retval denotes the return value of the function g. Since there are no summaries currently over

function g that answers above query, SMASH starts analyzing the function g. SMASH uses the

must summary over h to calculate under approximation to reach if statement. It basically prevent

a possibly expensive and hopeless not-may proof that one of those two branches is not feasible. The

path through else branch of function g doesn’t answer the query because the return value is 1 which

is not equal to 0. Now, SMASH follows the if branch of g function to answer the above query and

issues the following query.

〈i < 10
?

=⇒k (retval < 0)〉 (6.11)

Since there exists no summary over function k that answers the above query, SMASH analyzes the

function k. Since all the paths in the function k returns the non negative values, SMASH encodes

this analysis in the form of ¬May summary as follows.

〈true
¬May
=⇒ k (retval < 0)〉 (6.12)

Now, SMASH uses this summary to answer the above query. In turn, it results in answering query

over the function g.

〈true
¬May
=⇒ g (retval < 0)〉 (6.13)

Finally, with the above ¬May summary, SMASH concludes that there exists no inputs to main

function which makes the execution to reach error. It can be encoded as follows.

〈true
¬May
=⇒ main (error)〉 (6.14)

44

Here SMASH uses the must summary of function h to avoid a may-analysis over the return value of

function h while still being able to build a not-may analysis of the function main.

6.4.4 Computing Must summary using ¬May summary

We consider the following example to show the computation of must summary using ¬May summary

and finds an input which will make program execution to reach error in main function.

void main (int i) { int g (int i) {

0: int a = g(i); 0: if (i > 0)

1: if (a == 0) 1: return h(i) + 1;

2: error; else

3:} 2: return 0 ;

3:}

In above example, Let h be a complex function and hard to analyze. Assume that function h has

following ¬May summary.

〈true
¬May
=⇒ h (retval = −1)〉 (6.15)

Now, SMASH tries to find an execution in main function along the path 0, 1, 2 to reach error. Since

the frontier is edge from 1 to 2 and SMASH couldn’t extend the frontier, SMASH refines the state

1 in main function to 1∧P, 1∧¬P and issues the following query to extend the new frontier from 0

to 1∧P.

〈true
?

=⇒g (retval = 0)〉 (6.16)

where retval denotes the return value of the function g. Since there are no summaries currently over

function g that answers above query, SMASH starts analyzing the function g. Now, SMASH follows

the if branch of g function to answer the above query and issues the following query.

〈i > 0
?

=⇒h (retval = −1)〉 (6.17)

Since there is an existing ¬May summary that answers the above query over function h, SMASH

uses this summary and replies as follows.

〈i > 0
¬May
=⇒ h (retval = −1)〉 (6.18)

Now, SMASH explores the else branch of function g. The path through else branch of function

g answer the query because the return value is 0 which is equal to 0. Now, SMASH after exploring

both branches of function g comes to conclusion and replies to the query given to it as follows.

〈i ≤ 0
must
=⇒ g (retval = 0)〉 (6.19)

Finally, with the above must summary, SMASH concludes that there exists inputs to main function

which makes the execution to reach error and makes the following must summary.

〈i ≤ 0
must
=⇒main (error)〉 (6.20)

45

Chapter 7

Problem Statement

The SMASH algorithm, as described in previous chapter, make summaries at procedure boundaries

and utilize those summaries for further queries on that procedure. But SMASH algorithm couldn’t

handle certain class of recursive programs. It is as stated in paper [17] that SMASH would not be

guaranteed to terminate over recursive programs which have infinite data type domains or dynamic

memory allocations. In this chapter, we first provide an example of such program. Secondly, it was

not known whether SMASH can be terminated on all programs having finite data type domains

and not having dynamic memory allocations. We then show an example where SMASH fails on a

program with above two properties.

7.1 Recursive procedures of infinite data type domain

In this section, we consider the following program to show non termination of SMASH on the

recursive procedures containing infinite data type domain.

int main (int x) { int g (int x) {

0: int a = g(x); 0: if (x == 1)

1: if (a < 0) 1: return 1;

2: error; else

3: return 1; 2: return g(x-1) + 1;

} }

In the above example, g is a recursive function with an input x and domain of data type of input

x is infinite. Initially, assume that there are no summaries associated with both functions. Now,

SMASH tries to find an execution in main function along the path 0, 1, 2 to reach error. Then,

SMASH issues following query after performing some analysis on main function.

〈true
?

=⇒g (retval < 0)〉 (7.1)

where retval denotes the return value of the recursive function g. Since there are no summaries

currently that answers above query, SMASH starts analyzing the function g. Since the return value

from the path following if branch is 1, SMASH will immediately conclude that none of paths through

46

if branch don’t answer the query. Then, SMASH issues the following query by following the path

towards else branch in function g.

〈x != 0
?

=⇒g (retval < −1)〉 (7.2)

While analyzing the above query over same function g, SMASH issues following query by following

the path towards else branch in function g.

〈 x != -1 & x != 0
?

=⇒g (retval < −2)〉 (7.3)

Similarly, SMASH issues the following query in order to answer the above query.

〈 x != -2 & x != -1 & x != 0
?

=⇒g (retval < −3)〉 (7.4)

.

Since base case doesn’t answer any query, SMASH will keep on making queries continuously and

leads to non termination. So, if the domain of data types of recursive procedures is infinite, then

SMASH wouldn’t be guaranteed to terminate.

7.2 Recursive procedures of finite data type domain

In this section, we first consider a recursive procedure, containing finite domain of data types and not

allowing dynamic memory allocations, to show termination of the SMASH. Secondly, we consider

another recursive program with above two properties to show non termination of SMASH.

7.2.1 SMASH - Terminating

int main (int x) { int g (int x) {

0: int a = g(x); 0: if (x < 0 or x > 3) \\ For finite domain

1: if (a < 0) 1: return 0;

2: error; else

3: return 1; 2: if (x == 1)

} 3: return 1;

else

4: return g(x-1) + 1;

}

In the above example, g is a recursive function with input x. Domain of data type is the set

of all possible values taken by a variable of that data type. In order to express the finiteness

(x∈ {0, 1, 2, 3}) of domain of data type of x, lines 0 and 1 are explicitly added to function g. Now,

x will take value only from it’s domain. Assume that there are no summaries associated with both

functions.

47

Now, SMASH tries to find an execution in main function along the path 0, 1, 2 to reach error.

Then, SMASH issues following query after performing some analysis on main function.

〈true
?

=⇒g (retval < 0)〉 (7.5)

Since there are no summaries currently that answers above query, SMASH starts analyzing the func-

tion g. Since the return value from the path following first if branch is 0, SMASH will immediately

conclude that none of paths through first if branch don’t answer the query. So, SMASH follows

the first else branch to answer the query. Since the return value from the paths following second if

branch is 1, SMASH will immediately conclude that none of paths through second if branch don’t

answer the query. So, SMASH follows the second else branch and issues another query to answer

current query.

〈x ∈ {−1, 1, 2}
?

=⇒g (retval < −1)〉 (7.6)

Since x = -1 doesn’t belong to domain of data type of variable x, the query will be simplified to as

follows.

〈x ∈ {1, 2}
?

=⇒g (retval < −1)〉 (7.7)

While analyzing the above query over same function g, SMASH issues the following query.

〈x ∈ {1}
?

=⇒g (retval < −2)〉 (7.8)

Since the return value of base case is 1 and is less than -2, SMASH encodes the analysis as ¬ May

summary as follows.

〈x ∈ {1}
¬May
=⇒ g (retval < −2)〉 (7.9)

In turn, it results in following summaries using above ¬may summary.

〈x ∈ {1, 2}
¬May
=⇒ g (retval < −1)〉 (7.10)

〈true
¬May
=⇒ g (retval < 0)〉 (7.11)

Since the query is asked over values that are out of domain of data type of x and base case answers the

query, SMASH gets terminated by concluding with an ¬May summary. Finally, SMASH has proven

that there exist no inputs to main function that reaches error. Thus, SMASH is terminated over

this recursive procedure containing finite domain of data types and not allowing dynamic memory

allocations.

48

7.2.2 SMASH - Non terminating

Now, we consider another recursive procedure, containing finite domain of data types and not

allowing dynamic memory allocations, to show non termination of the SMASH.

int f (int x) { int g (int x) {

0: int a = g(x); 0: if (x < 1 and x > 8) \\ For finite domain

1: if (a < 0) 1: return 0;

2: error; else

3: return 1; 2: if (x == 1)

} 3: return 1;

4: else

5: a = h(x);

6: b = g(a-1);

7: return b;

}

In the above example, g is a recursive function on inputs x. In order to express the finiteness

(x∈ {1, 2, 3, 4, 5, 6, 7, 8}) of domain of data type of x, lines 0 and 1 are explicitly added to function

g. Now, x will take value only from it’s domain. Let h be a complex function and hard to analyze.

Assume that function h has following must summary.

〈 x = 5
must
=⇒h (retval = 6)〉 (7.12)

Now, SMASH tries to find an execution in main function along the path 0, 1, 2 to reach error. Then

SMASH issues the following query to reach error statement.

〈true
?

=⇒g (retval < 0)〉 (7.13)

Since there are no summaries currently that answers above query over function g, SMASH starts

analyzing the function g. Since the return value from the path following first if branch is 0, SMASH

will immediately conclude that none of paths through first if branch don’t answer the query. So,

SMASH follows the first else branch to answer the query. Since the return value from the paths

following second if branch is 1, SMASH will immediately conclude that none of paths through

second if branch don’t answer the query. So, SMASH follows the second else branch. It uses the

must summary of function h to calculate under approximation and issues the following query.

〈x = 5
?

=⇒g (retval < 0)〉 (7.14)

While analyzing the above query, SMASH uses the must summary of function h similarly and issues

the following query.

〈x = 5
?

=⇒g (retval < 0)〉 (7.15)

. Since the post condition of must summary of function h is same as pre-condition

of given query, SMASH will keep on making same query continuously and leads to non termination.

Thus, SMASH is not terminated over this recursive procedure containing finite domain of data types

and not allowing dynamic memory allocations.

49

Chapter 8

Solution

In this chapter, we show a way to handle the problem that has been discussed in last chapter. Then,

we illustrate the solution over an example.

8.1 Feasible Solution

This section explains the solution for termination of SMASH algorithm on recursive programs.

Typically, when a query 〈ϕ1
?

=⇒ Pϕ2〉 is given over a function P, SMASH chooses one of the

following actions.

1. If there exist a previously computed ¬May summary 〈ϕ̂1

¬May
=⇒ Pϕ̂2〉 that answers the given

query, then SMASH will use this ¬May summary directly without analyzing the procedure P.

2. If there exist a previously computed must summary 〈ϕ̂1
must
=⇒ Pϕ̂2〉 that answers the given

query, then SMASH will use this must summary directly without analyzing the procedure P.

3. Otherwise, SMASH will analyze the procedure P and will make either ¬May summary or Must

summary to answer the given query.

In-progress queries is the set of all queries that are in progress of answering the query given to it.

Essentially, we need to keep track for each function which queries are in progress. This is needed

to check whether the current query is answerable from any in-progress query. The basic problem

that has been encountered in last section is that queries are populated by SMASH that can be

answerable from in-progress queries and in turn leads to population of similar queries. This results

in non termination of SMASH algorithm over certain class of recursive programs. The following is

the probable solution to solve the problem that has been encountered in earlier section.

1. If there exist a previously computed ¬May summary 〈ϕ̂1

¬may
=⇒ Pϕ̂2〉 that answers the given

query, then SMASH will use this ¬May summary directly without analyzing the procedure P.

2. If there exist a previously computed must summary 〈ϕ̂1
must
=⇒ Pϕ̂2〉 that answers the given

query, then SMASH will use this must summary directly without analyzing the procedure P.

50

3. If there exist no in-progress query that can answer the given query, then allow SMASH to

analyze the procedure P and make either ¬May summary or Must summary to answer the

given query.

4. If there exists an in-progress query that can answer the given query, then reply to that query

by making query itself as ¬May summary. Then, the state before frontier gets refined and

partitions the state into state following path leading to query that is answerable from any

in-progress query and another state which possibly make a new query over the same function.

In this case, it leads to following situations.

(a) If it encounters an error and lands up with must summary, then it can be used directly

to answer the query.

(b) If it doesn’t encounter an error and land up with ¬May summary, then we cannot say

that there are no errors because we have willingly removed the case where SMASH leads

to non termination by populating the query, that is answerable from in-progress queries,

as ¬May summary.

8.2 Illustration

Consider the same example in previous section, where SMASH results in non termination over the

function which has finite domain of data types and not allowing dynamic memory allocations

int f (int x) { int g (int x) {

0: int a = g(x); 0: if (x < 1 and x > 8) \\ For finite domain

1: if (a < 0) 1: return 0;

2: error; else

3: return 1; 2: if (x == 1)

} 3: return 1;

4: else

5: a = h(x);

6: b = g(a-1);

7: return b;

}

In the above example, g is a recursive function on inputs x. In order to express the finiteness

(x∈ {1, 2, 3, 4, 5, 6, 7, 8}) of domain of data type of x, lines 0 and 1 are explicitly added to function

g. Now, x will take value only from it’s domain. Let h be a complex function and hard to analyze.

Assume that function h has following must summary.

〈 x = 5
must
=⇒h (retval = 6)〉 (8.1)

Now, SMASH tries to find an execution in main function along the path 0, 1, 2 to reach error.

Then SMASH issues the following query to reach error statement.

〈true
?

=⇒g (retval < 0)〉 (8.2)

51

Since there are no summaries currently that answers above query over function g, SMASH starts

analyzing the function g. Since the return value from the path following first if branch is 0, SMASH

will immediately conclude that none of paths through first if branch don’t answer the query. So,

SMASH follows the first else branch to answer the query. Since the return value from the paths

following second if branch is 1, SMASH will immediately conclude that none of paths through

second if branch don’t answer the query. So, SMASH follows the second else branch. It uses the

must summary of function h to calculate under approximation and issues the following query.

〈x = 5
?

=⇒g (retval < 0)〉 (8.3)

While analyzing the above query, SMASH uses the must summary of function h similarly and issues

the following query.

〈x = 5
?

=⇒g (retval < 0)〉 (8.4)

This is the point where the solution can be adapted and will be different from SMASH algorithm.

Since the above query is answerable by in-progress query, this query will be converted to ¬May

summary as follows.

〈 x = 5
¬May
=⇒ g (retval < 0)〉 (8.5)

In turn, SMASH results in making the following summaries using ¬ May summary.

〈 x = 5
¬may
=⇒ g (retval < 0)〉 (8.6)

Now, SMASH refines the regions using ¬May summary and generates the following query over

function h.

〈x ∈ {2, 3, 4, 5, 6, 7, 8}
?

=⇒h (retval ! = 6)〉 (8.7)

and proceeds further.

52

References

[1] G. J. Myers. The Art of Software Testing. John Wiley and Sons, New York .

[2] E. W. Dijkstra. The humble programmer. Communications of ACM 15, (1972) 859 – 866.

[3] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte, N. Tillmann, and M. Y.

Levin. Automating Software Testing Using Program Analysis. IEEE Software 25, (2008) 30–37.

[4] J. Edvardsson. A survey on automatic test data generation. Computer Science and Engineering

in Link ping 21 – 28.

[5] J. C. King. Symbolic Execution and Program Testing. Commun. ACM 19, (1976) 385–394.

[6] J. C. King and R. Floyd. An interpretation oriented theorem prover over integers. Computer

systems and science 6, (1972) 305–323.

[7] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. In PLDI.

2005 213–223.

[8] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In

ESEC/SIGSOFT FSE. 2005 263–272.

[9] P. Godefroid. Compositional dynamic test generation. In POPL. 2007 47–54.

[10] Z. Manna and A. Pnueli. Temporal verification of Reactive systems. Springer .

[11] R. W. Floyd. Assigning meaning to Programs. In in Proceedings of Symposium on Applied

Mathematics. 1967 19–32.

[12] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[13] T. B. Sriram Rajamani. Automatically Validating Temporal Safety Properties of Interfaces.

In in Proceedings of the Eighth International SPIN Workshop (SPIN 01), Lecture Notes in

Computer Science 2057, Springer-Verlag,. 2001 103–122.

[14] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL. 2002

58–70.

[15] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani. SYNERGY: a

new algorithm for property checking. In SIGSOFT FSE. 2006 117–127.

[16] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J. Simmons, S. Tetali, and A. V. Thakur.

Proofs from Tests. IEEE Trans. Software Eng. 36, (2010) 495–508.

53

[17] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Compositional may-must program

analysis: unleashing the power of alternation. In POPL. 2010 43–56.

[18] L. .de Moura, and N. Bjorner. Z3: An Efficient SMT Solver. In TACAS. 2008.

54

